
BAETYL Documentation

BAETYL

Sep 24, 2019

Contents

1 What is Baetyl 3
1.1 Advantages . 3
1.2 Components . 4
1.3 Installation . 5
1.4 Development . 5
1.5 Contributing . 6
1.6 Contact us . 6

2 Baetyl Design 7
2.1 Concepts . 7
2.2 Components . 8
2.3 Master . 9
2.4 Official Modules . 17

3 Contributing 23
3.1 Workflow . 23
3.2 Code Review . 24
3.3 Merge Rule . 24

4 Quick Install Baetyl 25
4.1 Install the container runtime . 25
4.2 Install Baetyl . 25
4.3 Import the example configuration (optional) . 26
4.4 Start Baetyl . 26
4.5 Verify successful installation . 26

5 Build Baetyl From Source 29
5.1 Environment Configuration . 29
5.2 Source Code Compilation . 31

6 Baetyl Configuration Interpretation 35
6.1 Master Configuration . 35
6.2 Application Configuration . 36
6.3 baetyl-agent Configuration . 37
6.4 baetyl-hub Configuration . 37
6.5 baetyl-function-manager Configuration . 40
6.6 baetyl-function-python Configuration . 41

i

6.7 baetyl-remote-mqtt Configuration . 41
6.8 baetyl-timer Configuration . 43

7 Device connect to Baetyl with Hub service 45
7.1 Workflow . 45
7.2 Connection Test . 46

8 Message transferring among devices with Local Hub Service 55
8.1 Workflow . 55
8.2 Message Routing Test . 56

9 Message handling with Local Function Service 59
9.1 Workflow . 59
9.2 Message Handling Test . 60

10 Message Synchronize between Baetyl-Hub and Baidu IoTHub via Baetyl-Remote-MQTT module 69
10.1 Workflow . 69
10.2 Message Synchronize via Baetyl-Remote-MQTT module . 70

11 How to write a python script for Python runtime 79
11.1 Function Name Convention . 81
11.2 Parameter Convention . 81
11.3 Hello World . 82

12 How to write a javascript for Node runtime 85
12.1 Function Name Convention . 87
12.2 Parameter Convention . 87
12.3 Hello World . 88

13 How to import third-party libraries for Python runtime 91
13.1 Import requests third-party libraries . 93
13.2 Import Pytorch third-party libraries . 95

14 How to import third-party libraries for Node runtime 99
14.1 Import Lodash third-party libraries . 101

15 Customize Runtime Module 105
15.1 Protocol Convention . 105
15.2 Configuration Convention . 106
15.3 Start/Stop Convention . 106

16 Customize Module 107
16.1 Directory Convention . 107
16.2 Start/Stop Convention . 108
16.3 SDK . 108

17 FAQ 111

18 Download 115
18.1 Golang download . 115
18.2 MQTT download . 115

ii

BAETYL Documentation

Baetyl, extend cloud computing, data and service seamlessly to edge devices.

Contents 1

https://baetyl.io/en/

BAETYL Documentation

2 Contents

CHAPTER 1

What is Baetyl

Baetyl is an open edge computing framework of Linux Foundation Edge that extends cloud computing, data
and service seamlessly to edge devices. It can provide temporary offline, low-latency computing services, and in-
clude device connect, message routing, remote synchronization, function computing, video access pre-processing, AI
inference, device resources report etc. The combination of Baetyl and the Cloud Management Suite of BIE(Baidu
IntelliEdge) will achieve cloud management and application distribution, enable applications running on edge devices
and meet all kinds of edge computing scenario.

About architecture design, Baetyl takes modularization and containerization design mode. Based on the modular
design pattern, Baetyl splits the product to multiple modules, and make sure each one of them is a separate, independent
module. In general, Baetyl can fully meet the conscientious needs of users to deploy on demand. Besides, Baetyl also
takes containerization design mode to build images. Due to the cross-platform characteristics of docker to ensure the
running environment of each operating system is consistent. In addition, Baetyl also isolates and limits the resources
of containers, and allocates the CPU, memory and other resources of each running instance accurately to improve the
efficiency of resource utilization.

1.1 Advantages

• Shielding Computing Framework: Baetyl provides two official computing modules(Local Function Module
and Python Runtime Module), also supports customize module(which can be written in any programming
language or any machine learning framework).

• Simplify Application Production: Baetyl combines with Cloud Management Suite of BIE and many other
productions of Baidu Cloud(such as CFC, Infinite, EasyEdge, TSDB, IoT Visualization) to provide data calcu-
lation, storage, visible display, model training and many more abilities.

• Service Deployment on Demand: Baetyl adopts containerization and modularization design, and each module
runs independently and isolated. Developers can choose modules to deploy based on their own needs.

• Support multiple platforms: Baetyl supports multiple hardware and software platforms, such as X86 and ARM
CPU, Linux and Darwin operating systems.

3

https://baetyl.io
https://www.lfedge.org
https://cloud.baidu.com/product/bie.html
https://cloud.baidu.com/product/cfc.html
https://cloud.baidu.com/product/infinite.html
https://ai.baidu.com/easyedge/home
https://cloud.baidu.com/product/tsdb.html
https://cloud.baidu.com/product/iotviz.html

BAETYL Documentation

1.2 Components

As an edge computing platform, Baetyl not only provides features such as underlying service management, but also
provides some basic functional modules, as follows:

• Baetyl Master is responsible for the management of service instances, such as start, stop, supervise, etc., con-
sisting of Engine, API, Command Line. And supports two modes of running service: native process mode and
docker container mode

• The official module baetyl-agent is responsible for communication with the BIE cloud management suite, which
can be used for application delivery, device information reporting, etc. Mandatory certificate authentication to
ensure transmission security;

• The official module baetyl-hub provides message subscription and publishing functions based on the MQTT
protocol, and supports four access methods: TCP, SSL, WS, and WSS;

• The official module baetyl-remote-mqtt is used to bridge two MQTT Servers for message synchronization and
supports configuration of multiple message route rules. ;

• The official module baetyl-function-manager provides computing power based on MQTT message mechanism,
flexible, high availability, good scalability, and fast response;

• The official module baetyl-function-python27 provides the Python2.7 function runtime, which can be dynami-
cally started by baetyl-function-manager;

• The official module baetyl-function-python36 provides the Python3.6 function runtime, which can be dynami-
cally started by baetyl-function-manager;

• The official module baetyl-function-node85 provides the Node 8.5 function runtime, which can be dynamically
started by baetyl-function-manager;

• SDK (Golang) can be used to develop custom modules.

4 Chapter 1. What is Baetyl

Design.html#master
Design.html#baetyl-agent
Design.html#baetyl-hub
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
Design.html#baetyl-remote-mqtt
Design.html#baetyl-function-manager
Design.html#baetyl-function-python27
Design.html#baetyl-function-python36
Design.html#baetyl-function-node85

BAETYL Documentation

1.2.1 Architecture

Architecture

1.3 Installation

• Quick Install Baetyl

• Build Baetyl From Source

1.4 Development

• Baetyl design

• Baetyl config interpretation

• How to write Python script for Python runtime

• How to write Node script for Node runtime

• How to import third-party libraries for Python runtime

• How to import third-party libraries for Node runtime

• How to develop a customize runtime for function

• How to develop a customize module for Baetyl

1.3. Installation 5

BAETYL Documentation

1.5 Contributing

If you are passionate about contributing to open source community, Baetyl will provide you with both code contribu-
tions and document contributions. More details, please see: How to contribute code or document to Baetyl.

1.6 Contact us

As the first open edge computing framework in China, Baetyl aims to create a lightweight, secure, reliable and scalable
edge computing community that will create a good ecological environment. In order to create a better development of
Baetyl, if you have better advice about Baetyl, please contact us:

• Welcome to join Baetyl’s Wechat

• Welcome to join Baetyl’s LF Edge Community

• Welcome to send email to baetyl@lists.lfedge.org

• Welcome to submit an issue

6 Chapter 1. What is Baetyl

https://baetyl.bj.bcebos.com/Wechat/Wechat-Baetyl.png
https://lists.lfedge.org/g/baetyl/topics
mailto:baetyl@lists.lfedge.org
https://github.com/baetyl/baetyl/issues

CHAPTER 2

Baetyl Design

2.1 Concepts

• System: Refers to the Baetyl system, including Master, Service, Volume and system resources used.

• Master: Refers to the core part of the Baetyl, responsible for managing Volume and Service, built-in Engine,
external RESTful API and command line.

• Module: Provides an executable package for Service, such as a docker image, to launch instances of Service.

• Service: Refers to a set of running programs that managed by Baetyl to provide specific functions such as
message routing services, function computing services, micro-services, etc.

• Instance: Refers to the specific running program or container launched by the Service, a Service can start
multiple instances, or can be dynamically started by other services. For example, the instances of function
runtime service are dynamically started and stopped by the function manager service.

• Volume: Refers to the directory used by the Service, can be a read-only directory, such as a directory for placing
resources such as configuration, certificates, scripts, etc., or a writable directory to persist data, such as logs and
database.

• Engine: Refers to the operational abstractions and concrete implementations of the various running modes of
the Service, such as the docker container mode and the native process mode.

• Services and System Relationships: Baetyl systems can start multiple services, there is no dependency between
services, and their startup order should not be assumed (although it is currently started sequentially). All data
generated by the service at runtime is temporary and will be deleted when the service is stopped, unless it is
mapped to a persistent directory. The program in the service may stop for various reasons, and the service will
restart the program according to the user’s configuration. This situation is not equal to the stop of the service,
so the temporary data will not be deleted.

7

BAETYL Documentation

2.2 Components

A complete Baetyl system consists of Master, Service, Volume and system resources used. The Master loads all
modules according to the application configuration to start the corresponding services, and a service can start several
instances, all of which are managed and supervised by Master. NOTE that the instances of the same service shares
the storage volume bound to the service. Therefore, if an exclusive resource exists, such as listening to the same port,
only one instance can be successfully started.

At present, Baetyl has the following official modules:

• baetyl-agent: Provides cloud agent service for status reporting and application OTA.

• baetyl-hub: Provides an MQTT-based message routing service.

• baetyl-remote-mqtt: Provides a bridge services for synchronizing messages between Hub and remote MQTT
services.

• baetyl-function-manager: Provides function services for function instance management and message-triggered
function calls.

• baetyl-function-python27: Provides a GRPC micro-service that loads Python scripts based on Python2.7 runtime
that can be managed by baetyl-function-manager as a function instance provider.

• baetyl-function-python36: Provides a GRPC micro-service that loads Python scripts based on Python3.6 runtime
that can be managed by baetyl-function-manager as a function instance provider.

• baetyl-function-node85: Provides a GRPC micro-service that loads javascripts based on Node8.5 runtime that
can be managed by baetyl-function-manager as a function instance provider.

Structure Diagram:

8 Chapter 2. Baetyl Design

BAETYL Documentation

Structure
Diagram

2.3 Master

Master as the core of the Baetyl system, it manages all storage volumes and services, has a built-in runtime engine
system, and provides RESTful APIs and command lines.

The start and stop process of the Master is as follows:

1. Execute the startup command: sudo systemctl start baetyl to start Baetyl in Docker mode and then
execute the command sudo systemctl status baetyl to check whether baetyl is running. In darwin,
excute sudo baetyl start to run the Baetyl in the foreground of the terminal.

2. The Master will first load etc/baetyl/conf.yml in the working directory, initialize the running mode, API server,
log and exit timeout, etc. These configurations can not be changed during application OTA. If no error is
reported, the baetyl.sock (only on Linux) file is generated in the var/run/ directory.

3. The Master will then attempt to load the application configuration var/db/baetyl/application.yml and will not
start any service if the configuration does not exist, otherwise the list of services and storage volumes in the
application configuration will be loaded. This file will be updated during application OTA, and the system will
update the services according to the new configuration.

4. Before starting all services, the Master will first call the Engine interface to perform some preparatory work.
For example, in container mode, it will try to download the image of all services first.

5. After the preparation is completed, start all services in sequence, and if the service fails to start, the Master will
exit. In the container mode, the storage volumes are mapped to the inside of the container; in the process mode,

2.3. Master 9

BAETYL Documentation

a temporary working directory is created for each service, and the storage volumes are soft linked to the working
directory. If the service is stopped, the temporary working directory will be cleaned up, and the behavior is the
same with container mode.

6. Finally, you can stop baetyl by ctrl + c, and the Master will notify all service instances to exit and wait. If
it times out, it will force the instance to be killed. Then clean up baetyl.sock and exit.

The complete application.yml configuration as follows:

// AppConfig application configuration
type AppConfig struct {

// specifies the version of the application configuration
Version string `yaml:"version" json:"version"`
// specifies the service information of the application
Services []ServiceInfo `yaml:"services" json:"services" default:"[]"`
// specifies the storage volume information of the application
Volumes []VolumeInfo `yaml:"volumes" json:"volumes" default:"[]"`

}

// VolumeInfo storage volume configuration
type VolumeInfo struct {

// specifies a unique name for the storage volume
Name string `yaml:"name" json:"name" validate:"regexp=^[a-zA-Z0-9][a-zA-

→˓Z0-9_-]{0\\,63}$"`
// specifies the directory where the storage volume is on the host
Path string `yaml:"path" json:"path" validate:"nonzero"`

}

// MountInfo storage volume mapping configuration
type MountInfo struct {

// specifies the name of the mapped storage volume
Name string `yaml:"name" json:"name" validate:"regexp=^[a-zA-Z0-9][a-zA-

→˓Z0-9_-]{0\\,63}$"`
// specifies the directory where the storage volume is in the container
Path string `yaml:"path" json:"path" validate:"nonzero"`
// specifies the operation permission of the storage volume, read-only or

→˓writable
ReadOnly bool `yaml:"readonly" json:"readonly"`

}

// ServiceInfo service configuration
type ServiceInfo struct {

// specifies the unique name of the service
Name string `yaml:"name" json:"name" validate:"regexp=^[a-zA-

→˓Z0-9][a-zA-Z0-9_-]{0\\,63}$"`
// specifies the image of the service, usually using the docker image name
Image string `yaml:"image" json:"image" validate:"nonzero"`
// specifies the number of instances started
Replica int `yaml:"replica" json:"replica" validate:"min=0"`
// specifies the storage volumes that the service needs, map the storage

→˓volume to the directory in the container
Mounts []MountInfo `yaml:"mounts" json:"mounts" default:"[]"`

// specifies the port bindings which exposed by the service, only for docker
→˓container mode

Ports []string `yaml:"ports" json:"ports" default:"[]"`
// specifies the device bindings which used by the service, only for docker

→˓container mode
Devices []string `yaml:"devices" json:"devices" default:"[]"`

(continues on next page)

10 Chapter 2. Baetyl Design

BAETYL Documentation

(continued from previous page)

// specifies the startup arguments of the service program, but does not
→˓include `arg[0]`

Args []string `yaml:"args" json:"args" default:"[]"`
// specifies the environment variable of the service program
Env map[string]string `yaml:"env" json:"env" default:"{}"`
// specifies the restart policy of the instance of the service
Restart RestartPolicyInfo `yaml:"restart" json:"restart"`
// specifies resource limits for a single instance of the service, only for

→˓docker container mode
Resources Resources `yaml:"resources" json:"resources"`

}

2.3.1 Engine

Engine is responsible for the storage volume mapping of services, instance start and stop, daemon, etc.. It abstracts
the service operation, can implement different service running modes. Depending on the capabilities of the device,
different running modes can be selected to run the services. The docker container mode and the native process mode
are currently supported, and the k3s container mode will be supported later.

Docker Engine

The docker engine interprets the service Image as a docker image address and starts the service by calling the Docker
Engine client. All services use a custom network provided by Docker Engine (default is baetyl), and the ports
are exposed according to the Ports information. The directories are mapped according to the Mounts information,
the devices are mapped according to the Devices information, and the resources that the containers can use, such as
CPU, memory, etc., are configured according to the Resources information. Services can be accessed directly using
the service name, which is routed by docker’s DNS server. Each instance of the service corresponds to a container,
and the engine is responsible for starting and stopping the container.

Native Engine

On platforms that do not provide container services (such as older versions of Windows), the Native engine simulates
the container’s experience as much as possible. The engine interprets the service image as the package name. The
package is provided by the storage volume and contains the program required by the service, but the dependencies of
this program (such as Python interpreter, Node interpreter, lib, etc.) need to be installed on the host in advance. All
services use the host network directly, all ports are exposed, and users need to be careful to avoid port conflicts. Each
instance of the service corresponds to a process, and the engine is responsible for starting and stopping the process.

NOTE: Process mode does not support resource restrictions, no need to expose ports, map devices.

At present, the above two modes basically achieve unified configuration, leaving only the difference in service address
configuration, so the configuration in example is divided into two directories, native and docker, but will eventually be
unified.

2.3.2 RESTful API

The Baetyl Master exposes a set of RESTful APIs, adopts HTTP/1. By default, Unix Domain Socket is used on Linux
systems, and the fixed address is /var/run/baetyl.sock. Other environments use TCP. The default address is
tcp://127.0.0.1:50050. At present, the authentication mode of the interface adopts a simple dynamic token.
When the Master starts the services, it will dynamically generate a Token for each service, and the service name and
Token are transmitted to the service instance as environment variables which can be read by instance and sent to the

2.3. Master 11

BAETYL Documentation

Master in request header. It should be noted that the dynamically launched instance cannot obtain the Token, so the
dynamic instance cannot dynamically start other instances.

For the service instance, after the instance is started, you can get the API Server address of the Baetyl Master, the name
and Token of the service, and the name of the instance from the environment variable. For details, see Environment
Variable.

The Header key is as follows:

• x-openedge-username: service name as username

• x-openedge-password: dynamic token as password

The following are the currently available interfaces:

• GET /v1/system/inspect gets system information and status

• PUT /v1/system/update updates system and services

• GET /v1/ports/available gets available port on host

• PUT /v1/services/{serviceName}/instances/{instanceName}/start starts an instance of a service dynamically

• PUT /v1/services/{serviceName}/instances/{instanceName}/stop stops an instance of a service dynamically

• PUT /v1/services/{serviceName}/instances/{instanceName}/report reports the custom info or stats of the in-
stance of the service

System Inspect

This interface is used to obtain the following information and status:

// Inspect all baetyl information and status inspected
type Inspect struct {

// exception information
Error string `json:"error,omitempty"`
// inspect time
Time time.Time `json:"time,omitempty"`
// software information
Software Software `json:"software,omitempty"`
// hardware information
Hardware Hardware `json:"hardware,omitempty"`
// service information, including service name, instance running status, etc.
Services Services `json:"services,omitempty"`
// storage volume information, including name and version
Volumes Volumes `json:"volumes,omitempty"`

}

// Software software information
type Software struct {

// operating system information of host
OS string `json:"os,omitempty"`
// CPU information of host
Arch string `json:"arch,omitempty"`
// Baetyl process work directory
PWD string `json:"pwd,omitempty"`
// Baetyl running mode of application services
Mode string `json:"mode,omitempty"`
// Baetyl compiled Golang version
GoVersion string `json:"go_version,omitempty"`

(continues on next page)

12 Chapter 2. Baetyl Design

BAETYL Documentation

(continued from previous page)

// Baetyl release version
BinVersion string `json:"bin_version,omitempty"`
// Baetyl git revision
GitRevision string `json:"git_revision,omitempty"`
// Baetyl loaded application configuration version
ConfVersion string `json:"conf_version,omitempty"`

}

// Hardware hardware information
type Hardware struct {

// memory usage information of host
MemInfo *utils.MemInfo `json:"mem_stats,omitempty"`
// CPU usage information of host
CPUInfo *utils.CPUInfo `json:"cpu_stats,omitempty"`
// disk usage information of host
DiskInfo *utils.DiskInfo `json:"disk_stats,omitempty"`
// CPU usage information of host
GPUInfo []utils.GPUInfo `json:"gpu_stats,omitempty"`

}

System Update

This interface is used to update the application or the master binary in the system, which called the application OTA
or the master OTA. The configuration of the volumes, networks, and services will be compared during application
OTA. If the service and its related configuration are not changed, the service will not be restarted, otherwise it will be
restarted.

The process of application OTA is as follows:

2.3. Master 13

BAETYL Documentation

update

14 Chapter 2. Baetyl Design

BAETYL Documentation

Instance Start&Stop

This interface is used to dynamically start and stop an instance of a service. You need to specify the service name and
instance name. If you repeatedly launch an instance of the same name with the same service, the previously started
instance will be stopped first, and then the new instance will be started.

This interface supports the dynamic configuration of the service to cover the static configuration in the storage volume.
The overlay logic adopts the environment variable. When the instance starts, the environment variable can be loaded
to overwrite the configuration in the storage volume to avoid resource conflicts. For example, in the native process
mode, when the function manager service starts the function runtime instance, the free ports are allocated in advance,
so that the function runtime instances can listen to different ports.

Instance Report

This interface is used to periodically report the custom status information of the service instance to the Baetyl Master.
The content of the report is placed in the body of the request, and JSON format is used. The first layer of the JSON
field is used as the key and its value will be overwritten if it is reported multiple times. For example:

If the instance of the service infer reports the following information for the first time, including info and stats:

{
"info": {

"company": "baidu",
"scope": "ai"

},
"stats": {

"msg_count": 124,
"infer_count": 120

}
}

The subsequent JSON that baetyl-agent reports to the cloud is as follows:

{
...
"time": "0001-01-01T00:00:00Z",
"services": [

{
"name": "infer",
"instances": [

{
"name": "infer",
"start_time": "2019-04-18T16:04:45.920152Z",
"status": "running",
...

"info": {
"company": "baidu",
"scope": "ai"

},
"stats": {

"msg_count": 124,
"infer_count": 120

}
}

]
},

(continues on next page)

2.3. Master 15

BAETYL Documentation

(continued from previous page)

]
...

}

If the instance of the service infer reports the following information for the second time, containing only stats,
the old stats will be overwritten:

{
"stats": {

"msg_count": 344,
"infer_count": 320

}
}

The subsequent JSON that baetyl-agent reports to the cloud is as follows, the old info is kept and the old
stats is overwritten:

{
...
"time": "0001-01-01T00:00:00Z",
"services": [

{
"name": "infer",
"instances": [

{
"name": "infer",
"start_time": "2019-04-18T16:04:46.920152Z",
"status": "running",
...

"info": {
"company": "baidu",
"scope": "ai"

},
"stats": {

"msg_count": 344,
"infer_count": 320

}
}

]
},

]
...

}

2.3.3 Environment Variable

Baetyl currently sets the following system environment variables for the service instance:

• BAETYL_HOST_OS: Operate system of the device (host) where Baetyl is located

• BAETYL_HOST_ID: ID of the device (host) where Baetyl is located, can be used as device fingerprint

• BAETYL_MASTER_API_ADDRESS: API Server address of the Baetyl Master

• BAETYL_MASTER_API_VERSION: API version of the Baetyl Master

16 Chapter 2. Baetyl Design

BAETYL Documentation

• BAETYL_SERVICE_MODE: Service running mode adopted by the Baetyl Master

• BAETYL_SERVICE_NAME: The name of the service

• BAETYL_SERVICE_TOKEN: Dynamically assigned Token

• BAETYL_SERVICE_INSTANCE_NAME: The name of the instance of the service

• BAETYL_SERVICE_INSTANCE_ADDRESS: The address of the instance of the service

The official function manager service is to connect to the Baetyl Master by reading
BAETYL_MASTER_API_ADDRESS. For example, the BAETYL_MASTER_API_ADDRESS under Linux sys-
tem is unix:///var/run/baetyl.sock; In the container mode under other systems, the default value of
BAETYL_MASTER_API_ADDRESS is tcp://host.docker.internal:50050; In the process mode under
other systems, the default value of BAETYL_MASTER_API_ADDRESS is tcp://127.0.0.1:50050.

NOTE: Environment variables configured in the application will be overwritten if they are the same as the above
system environment variables.

2.4 Official Modules

Currently, several modules are officially provided to meet some common application scenarios. Of course, developers
can also develop their own modules.

2.4.1 baetyl-agent

The baetyl-agent, also known as the cloud agent module, is responsible for communicating with the BIE Cloud
Management Suite. It has MQTT and HTTPS channels. MQTT enforces two-way authentication for SSL/TLS cer-
tificates. HTTPS enforces one-way authentication for SSL/TLS certificates. Developers can refer to this module to
implement their own Agent module to connect their own cloud platform.

The cloud agent do three things at the moment:

1. After the startup, periodically obtain status information from the Master and report it to the cloud.

2. Listen to the events sent by the cloud, trigger the corresponding operations, and currently only process the
application OTA event.

3. Responsible for cleaning the volume directory, the master will not be notified to do APP OTA during the volume
cleaning period.

After receiving the application OTA command from the BIE Cloud Management Suite, the cloud agent first downloads
the storage volume data packets used in all configurations and decompresses them to the specified location. If the
storage volume data packets already exist and the MD5 is the same, the download will be skipped. After all storage
volumes are ready, the cloud agent module will call the Master’s /update/system interface to trigger the Master
to update the system.

_NOTE: If the device cannot connect to the external network or needs to leave the cloud management suite, you can
remove the Agent module from the application configuration and run offline. _

2.4.2 baetyl-hub

The baetyl-hub is a stand-alone version of the message subscription and distribution center that uses the
MQTT3.1.1 protocol to provide reliable messaging services in low-bandwidth, unreliable networks. It acts as a mes-
saging middleware for the Baetyl system, providing message-driven interconnect capabilities for all services.

2.4. Official Modules 17

BAETYL Documentation

Currently supports 4 access methods: TCP, SSL (TCP + SSL), WS (Websocket) and WSS (Websocket + SSL). The
MQTT protocol support is as follows:

• Support Connect, Disconnect, Subscribe, Publish, Unsubscribe, Ping, etc.

• Support QoS levels 0 and 1

• Support Retain, Will, Clean Session

• Support topics subscribed with wildcards such as +, #

• Support validation of ClientID and Payload

• Not Support topics subscribed with prefix $

• Not Support Client’s Keep Alive feature and QoS Level 2

NOTE:

• The maximum number of separators / in the publish and subscribe topics is no more than 8, and the topic name
can be up to 255 characters in length.

• The maximum length of the message message is 32k. The maximum length that can be supported is 268, 435,
455 (Byte), about 256 MB, which can be modified by the message configuration item.

• ClientID supports uppercase and lowercase letters, numbers, underscores, hyphens (minus sign), and empty
characters (not allowed to be empty if CleanSession is false), up to 128 characters in length

• The QoS of the message can only be dropped. For example, when the QoS of the original message is 0, even if
the subscription QoS is 1, the message is sent at the level of QoS 0.

• If certificate mutual authentication is used, the client must send a non-empty username and empty password
when connecting, username will be used for topic authentication. If password is not empty, it will further check
if the password is correct.

The Hub supports simple topic routing, such as subscribing to a message with the topic t and publishing it back with
a new topic t/topic.

If this module does not meet your requirements, you can also use a third-party MQTT Broker/Server to replace it.

2.4.3 baetyl-function-manager

The baetyl-function-manager, also known as the function manager module, provides the computing power
based on the MQTT message mechanism, flexible, highly available, scalable, and responsive, and compatible Baidu
CFC. It is important to note that function service do not guarantee message order, unless only one function
instance is started.

The function manager module is responsible for managing all function instances and message routing rules, and
supports automatic scaling. The structure diagram is as follows:

18 Chapter 2. Baetyl Design

https://cloud.baidu.com/product/cfc.html
https://cloud.baidu.com/product/cfc.html

BAETYL Documentation

Structure
Diagram

If the function executes incorrectly, the function server returns a message in the following format for subsequent
processing. Where functionMessage is the message input by the function (the message being processed), not the
message returned by the function. An example is as follows:

{
"errorMessage": "rpc error: code = Unknown desc = Exception calling application",
"errorType": "*errors.Err",
"functionMessage": {

"ID": 0,
"QOS": 0,
"Topic": "t",
"Payload": "eyJpZCI6MSwiZGV2aWNlIjoiMTExIn0=",
"FunctionName": "sayhi",
"FunctionInvokeID": "50f8f102-2b8c-4904-86df-0728811a5a4b"

}
}

2.4.4 baetyl-function-python27

The design motion of module baetyl-function-python27 is the same as the mod-
ule baetyl-function-python36 but their python runtime are different. The module
baetyl-function-python27 is based on python27 runtimeand provide the libs protobuf3grpcio based
on Python2.7.

2.4. Official Modules 19

BAETYL Documentation

2.4.5 baetyl-function-python36

baetyl-function-python36 provides Python functions similar to Baidu CFC, where users can handle mes-
sages by writing their own functions. It is very flexible to use for filtering, converting and forwarding messages.
This module can be started separately as a GRPC service or as a function instance provider for the function manager
module.

The input and output of a Python function can be either JSON or binary. The message Payload will try a JSON
decoding (json.loads(payload)) before passing it as a parameter. If it succeeds, it will pass the dictionary
type. If it fails, it will pass the original binary data.

Python functions support reading environment variables such as os.environ[‘PATH’].

Python functions support reading contexts such as context[‘functionName’].

An example is shown below:

#!/usr/bin/env python3
#-*- coding:utf-8 -*-
"""
module to say hi
"""

def handler(event, context):
"""
function handler
"""
event['functionName'] = context['functionName']
event['functionInvokeID'] = context['functionInvokeID']
event['messageQOS'] = context['messageQOS']
event['messageTopic'] = context['messageTopic']
event['sayhi'] = 'hello, world'
return event

_NOTE: In the native process mode, to run sayhi.py provided in the example of this project, you need to install
Python3.6 and its packages pyyaml, protobuf3 and grpcio (pip installation can be used, **pip3** install
pyyaml protobuf grpcio). _

2.4.6 baetyl-function-node85

The design motion of module baetyl-function-node85 is the same as the module
baetyl-function-python36, and provide Node8.5 runtime for Baetyl, where users can write javascripts to
handle messages in JSON or binary format. An example is shown below:

#!/usr/bin/env node

exports.handler = (event, context, callback) => {
result = {};

if (Buffer.isBuffer(event)) {
const message = event.toString();
result["msg"] = message;
result["type"] = 'non-dict';

}else {
result["msg"] = event;
result["type"] = 'dict';

}

(continues on next page)

20 Chapter 2. Baetyl Design

https://cloud.baidu.com/product/cfc.html

BAETYL Documentation

(continued from previous page)

result["say"] = 'hello world';
callback(null, result);

};

NOTE: In the native process mode, to run index.js provided in the example of this project, you need to install Node8.5.

2.4.7 baetyl-remote-mqtt

baetyl-remote-mqtt, also known as the remote MQTT communication module, bridges two MQTT Servers for
message synchronization. Currently, you can configure multiple message routing rules. The structure is as follows:

Remote
MQTT Communication Example

As shown in the figure above, the Baetyl remote communication module is used to forward and synchronize messages
between the Baetyl Local Hub Module and the remote cloud Hub. Further, the edge-cloud collaborative message
forwarding and delivery can be realized by accessing the MQTT Client at both ends.

2.4. Official Modules 21

BAETYL Documentation

22 Chapter 2. Baetyl Design

CHAPTER 3

Contributing

Welcome to Baetyl Open Source Project. To contribute to Baetyl, please follow the process below.

We sincerely appreciate your contribution. This document explains our workflow and work style.

3.1 Workflow

Baetyl use this Git branching model. The following steps guide usual contributions.

1. Fork

Our development community has been growing fast, so we encourage developers to submit code. And please
file Pull Requests from your fork. To make a fork, please refer to Github page and click on the “Fork” button.

2. Prepare for the development environment

go get github.com/baetyl/baetyl # clone baetyl official repository
cd $GOPATH/src/github.com/baetyl/baetyl # step into baetyl
git checkout master # verify master branch
git remote add fork https://github.com/<your_github_account>/baetyl # specify
→˓remote repository

3. Push changes to your forked repository

git status # view current code change status
git add . # add all local changes
git commit -c "modify description" # commit changes with comment
git push fork # push code changes to remote repository which specifies your
→˓forked repository

4. Create pull request

You can push and file a pull request to Baetyl official repository https://github.com/baetyl/baetyl. To create a
pull request, please follow these steps. Once the Baetyl repository reviewer approves and merges your pull
request, you will see the code which contributed by you in the Baetyl official repository.

23

https://nvie.com/posts/a-successful-git-branching-model/
https://help.github.com/articles/fork-a-repo/
https://github.com/baetyl/baetyl
https://help.github.com/articles/creating-a-pull-request/

BAETYL Documentation

3.2 Code Review

• About Golang format, please refer to Go Code Review Comments.

• Please feel free to ping your reviewers by sending them the URL of your pull request via email. Please do this
after your pull request passes the CI.

• Please answer reviewers’ every comment. If you are to follow the comment, please write “Done”; please give a
reason otherwise.

• If you don’t want your reviewers to get overwhelmed by email notifications, you might reply their comments by
in a batch.

• Reduce the unnecessary commits. Some developers commit often. It is recommended to append a sequence of
small changes into one commit by running git commit --amend instead of git commit.

3.3 Merge Rule

• Please run command govendor fmt +local before push changes, more details refer to govendor

• Must run command make test before push changes(unit test should be contained), and make sure all unit
test and data race test passed

• Only the passed(unit test and data race test) code can be allowed to submit to Baetyl official repository

• At least one reviewer approved code can be merged into Baetyl official repository

Note: The document’s contribution rules are the same as the rules above.

• English document homepage

• Chinese document homepage

• English Document Project

• Chinese Document Project

24 Chapter 3. Contributing

https://github.com/golang/go/wiki/CodeReviewComments
https://help.github.com/articles/reviewing-proposed-changes-in-a-pull-request/
https://github.com/kardianos/govendor
https://docs.baetyl.io/en/latest
https://docs.baetyl.io/zh_CN/latest
https://github.com/baetyl/docs.baetyl.io
https://github.com/baetyl/cn.docs.baetyl.io

CHAPTER 4

Quick Install Baetyl

Compared to manually download software in previous version, it supports installing Baetyl through package man-
ager in newer version. With this method, users can quickly install Baetyl by simply typing a few commands at
terminal.

Installation packages are provided for Ubuntu16.04, Ubuntu18.04, Debian9, CentOS7 and Raspbian-stretch currently.
The supported platforms are amd64, i386, armv7l, and arm64.

Baetyl supports two running modes: docker container mode and native process mode. This document will be de-
scribed in docker container mode.

4.1 Install the container runtime

Baetyl relies on docker container runtime in docker container mode. Users can install docker (for Linux-like systems)
with the following command if it’s not installed yet:

curl -sSL https://get.docker.com | sh

View the version of installed docker:

docker version

NOTEAccording to the Official Release Log, the version of docker lower than 18.09.2 has some security implications.
It is recommended to install/update the docker to 18.09.2 and above.

For more details, please see the official documentation.

4.2 Install Baetyl

The rpm and deb packages will be released accordingly when Baetyl releases a new version. Users can install Baetyl
to the device through package manager with following command:

25

https://docs.docker.com/engine/release-notes/#18092
https://docs.docker.com/install/

BAETYL Documentation

curl -sSL http://dl.baetyl.io/install.sh | sudo -E bash -

If everything is ok, Baetyl will be installed on the /usr/local directory after the execution is complete.

4.3 Import the example configuration (optional)

As an edge computing framework, Baetyl provides MQTT connect service through hub module, provides local func-
tional service through function manager module and some runtime modules like python27, python36, nodejs85, sql
and so on. What’s more, all the modules are started by Baetyl main program through a configuration file. More detailed
contents about the module’s configuration please refer to Configuration Interpretation for further information.

Baetyl officially provides an example configuration for some module which can be imported using following com-
mand:

curl -sSL http://dl.baetyl.io/install_with_docker_example.sh | sudo -E bash -

The example configuration is for learning and testing purposes only. Users should perform on-demand configuration
according to actual working scenarios.

There is no need to import any configuration files if no modules need to launch.

4.4 Start Baetyl

The newer version of Baetyl uses Systemd as a daemon, and users can start Baetyl with the following command:

sudo systemctl start baetyl

If you have previously installed Baetyl or imported a new configuration file, it is recommended to use the reboot
method:

sudo systemctl restart baetyl

Stop Baetyl:

sudo systemctl stop baetyl

If users only want to run Baetyl in the foreground, execute the following command::

sudo baetyl start

4.5 Verify successful installation

After installation, users can verify whether Baetyl is successfully installed or not by the following steps:

• executing the command sudo systemctl status baetyl to check whether baetyl is running, as
shown below. Otherwise, baetyl fails to start.

26 Chapter 4. Quick Install Baetyl

BAETYL Documentation

Baetyl

• Executing the command docker stats to view the running status of docker containers. Since the main
program baetyl will first pull required images from docker mirror repository, it will take 2~5 minutes to see
the baetyl starts successfully. Take the example configurations as above, the running status of containers are as
shown below. If some containers are missing, it means they failed to start.

docker
stats

• Under the condition of two above failures, you need to view the log of main program. And the log file which is
stored in /usr/local/var/log/baetyl/baetyl.log by default. Once found errors in the log file, users can refer to FAQ.
If necessary, just Submit an issue.

4.5. Verify successful installation 27

https://github.com/baetyl/baetyl/issues

BAETYL Documentation

28 Chapter 4. Quick Install Baetyl

CHAPTER 5

Build Baetyl From Source

Compared to the quick installation of Baetyl, users can compile Baetyl from source to get the latest features.

Before compiling, users should configure the build environment. So this article consist of two parts: environment
configuration and source code compilation.

5.1 Environment Configuration

5.1.1 Linux Platform

Install Go

Go to related resources to complete the download, then:

tar -C /usr/local -zxf go$VERSION.$OS-$ARCH.tar.gz # Decompress the Go archive to
→˓the /usr/local directory
export PATH=$PATH:/usr/local/go/bin # Configuring environment variables
export GOPATH=yourpath # GOPATH setting
go env # View Go's environment variables
go version # View Go's version

NOTE: Baetyl requires that the compiled version of Go should be above 1.10.0.

Install the container runtime

In docker container mode, Baetyl relies on docker container runtime. If docker is not installed yet, users can install
the latest version of docker (for Linux-like systems) with the following command:

curl -sSL https://get.docker.com | sh

View the version of installed docker:

29

BAETYL Documentation

docker version

NOTEAccording to the Official Release Log, the version of docker lower than 18.09.2 has some security implications.
It is recommended to install/update the docker to 18.09.2 and above.

For more details, please see the official documentation.

5.1.2 Darwin Platform

Install Go

• Install by using HomeBrew

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
→˓master/install)" # install homebrew
brew install go

Modify the environment configuration file after the installation is complete.(e.g: ~/.bash_profile)

export GOPATH="${HOME}/go"
export GOROOT="$(brew --prefix golang)/libexec"
export PATH="$PATH:${GOPATH}/bin:${GOROOT}/bin"

Make the environment variable take effect:

source yourfile

Create the GOPATH specified directory:

test -d "${GOPATH}" || mkdir "${GOPATH}"

• Install by using binary file

Go to related resources to complete the download, then:

tar -C /usr/local -zxf go$VERSION.$OS-$ARCH.tar.gz # Decompress the Go archive to
→˓the /usr/local directory
export PATH=$PATH:/usr/local/go/bin # Configuring environment variables
export GOPATH=yourpath # GOPATH setting
go env # View Go's environment variables
go version # View Go's version

NOTE: Baetyl requires that the compiled version of Go should be above 1.10.0.

Install the container runtime

Go to official page to download the .dmg file you need. Once done, double-click to open and drag docker into the
application folder.

30 Chapter 5. Build Baetyl From Source

https://docs.docker.com/engine/release-notes/#18092
https://docs.docker.com/install/
https://hub.docker.com/editions/community/docker-ce-desktop-mac

BAETYL Documentation

Install On Darwin

View the version of installed docker:

docker version

5.2 Source Code Compilation

5.2.1 Download Source Code

After completing the compilation environment configuration according to the corresponding environment, go to the
Baetyl Github Page to download source code of baetyl.

go get github.com/baetyl/baetyl

5.2.2 Build Docker Image

In container mode, docker starts the module by running the image corresponding to each module, so build the mirror
first with the following command:

cd $GOPATH/src/github.com/baetyl/baetyl
make clean
make image # build image

Note: Under the Darwin system, users need to specify the compilation parameters because the compiled images
themselves are based on Linux system:

env GOOS=linux GOARCH=amd64 make image

The following docker images are generated by the above command:

baetyl-agent:latest
baetyl-hub:latest
baetyl-function-manager:latest
baetyl-remote-mqtt:latest
baetyl-timer:latest
baetyl-function-python27:latest
baetyl-function-python36:latest
baetyl-function-node85:latest

5.2. Source Code Compilation 31

https://github.com/baetyl/baetyl

BAETYL Documentation

View the generated images with the following command:

docker images

5.2.3 Compile

cd $GOPATH/src/github.com/baetyl/baetyl
make rebuild

Note: You need to install node and npm beforehand because the Node 8.5 runtime module will call npm
install command to install dependencies during make. For details, please refer to [Nodejs official website]
(https://nodejs.org/en/download /).

After the compilation is completed, the following executable files will be generated in the root directory and each
module directory, respectively:

baetyl
baetyl-agent/baetyl-agent
baetyl-hub/baetyl-hub
baetyl-function-manager/baetyl-function-manager
baetyl-remote-mqtt/baetyl-remote-mqtt
baetyl-timer/baetyl-timer

In addition, package.zip files are generated in each module directory.

5.2.4 Install

Install to default path: /usr/local

cd $GOPATH/src/github.com/baetyl/baetyl
make install # install for docker mode with example configuration
make install-native # install for native mode with example configuration

Specify the installation path, such as installing into the output directory:

cd $GOPATH/src/github.com/baetyl/baetyl
make install PREFIX=output

On the Darwin platform, you need to set the /usr/local/var directory to make it (and it’s subdirectories) can be
bind mounted into Docker containers which would be used by Baetyl.

32 Chapter 5. Build Baetyl From Source

BAETYL Documentation

Mount
path on Mac

5.2.5 Run

If the program is already installed to the default path: /usr/local

sudo baetyl start

If the program has been installed to the specified path, such as installing into the output directory:

cd $GOPATH/src/github.com/baetyl/baetyl
sudo ./output/bin/baetyl start

NOTE:

1. After the baetyl is started, you can check if the baetyl has run successfully by ps -ef | grep "baetyl"
and determine the parameters used at startup. And you can check the log file for details. Log files are stored by
default in the var/log/baetyl directory of the working directory.

2. If run in docker container mode, the container runtime status can be viewed via the docker stats command.

3. To use your own image, you need to modify the image of the modules and functions in the application configu-
ration to specify your own image.

5.2. Source Code Compilation 33

BAETYL Documentation

4. For custom configuration, follow the instructions in Configuration Interpretation to make the relevant settings.

5.2.6 Uninstall

If it is the default installation:

cd $GOPATH/src/github.com/baetyl/baetyl
make clean # Can be used to clean executable files generated by compilation
make uninstall # Uninstall if you install in docker mode
make uninstall-native # Uninstall if you install in native mode

If the installation path is specified, for example, it is installed into the output directory.

cd $GOPATH/src/github.com/baetyl/baetyl
make clean # Can be used to clean executable files generated by compilation
make uninstall PREFIX=output # Uninstall if you install in docker mode
make uninstall-native PREFIX=output # Uninstall if you install in native mode

34 Chapter 5. Build Baetyl From Source

CHAPTER 6

Baetyl Configuration Interpretation

Supported units:

• Size unit: b(byte), k(kilobyte), m(megabyte), g(gigabyte)

• Time unit: s(second), m(minute), h(hour)

Configuration examples can be found in the example directory of this project.

6.1 Master Configuration

The Master configuration and application configuration are separated. The default configuration file is etc/baetyl/
conf.yml in the working directory. The configuration is interpreted as follows:

mode: The default value is `docker`, running mode of services. **docker** container
→˓mode or **native** process mode
grace: The default value is `30s`, the timeout for waiting services to gracefully
→˓exit.
server: API Server configuration of Master.

address: The default value can be read from environment variable `BAETYL_MASTER_API_
→˓ADDRESS`, address of API Server.
timeout: The default value is `30s`, timeout of API Server.

logger: Logger configuration
path: The default is `empty` (none configuration), that is, it does not write to

→˓the file. If the path is specified, it writes to the file.
level: The default value is `info`, log level, support `debug``info``warn` and

→˓`error`.
format: The default value is `text`, log print format, support `text` and `json`.
age:
max: The default value is `15`, means maximum number of days the log file is kept.

size:
max: The default value is `50`, log file size limit, default unit is `MB`.

backup:
max: The default value is `15`, the maximum number of log files to keep.

35

BAETYL Documentation

6.2 Application Configuration

The default configuration file for the application configuration is var/db/baetyl/application.yml in the
working directory. The configuration is interpreted as follows:

version: Application version
services: Service list configuration

- name: [MUST] Service name, must be unique in the service list
image: [MUST] Service entry. In the docker container mode, which means the

→˓address of image. In the native process mode indicates where the service program
→˓package is located.

replica: The default value is 0, the number of service copies, indicating the
→˓number of service instances started. Usually the service only needs to start one.
→˓The function runtime service is generally set to 0, not started by the Master, but
→˓is dynamically started by the function manager service.

mounts: Storage volume mapping list
- name: [MUST] The volume name, corresponding to one of the storage volume lists

path: [MUST] The path mapped by the volume in the container
readonly: The default value is false, whether the storage volume is read-only

ports: Ports exposed in docker container mode, for example
- 0.0.0.0:1883:1883
- 0.0.0.0:1884:1884/tcp
- 8080:8080/tcp
- 9884:8884

devices: Device mapping in docker container mode, for example
- /dev/video0
- /dev/sda:/dev/xvdc:r

args: Service instance startup arguments, for example
- '-c'
- 'conf/conf.yml'

env: Environment variables of service instance, for example
version: v1

restart: Service restart policy configuration
retry:

max: The default is `empty`(none configuration), which means always retry. If
→˓not, which means the maximum number of service restarts.

policy: The default value is `always`, restart policy, support `no`, `always`
→˓and `on-failure`. And `no` means none restart, `always` means always restart, `on-
→˓failure` means restart the service if it exits abnormally.

backoff:
min: The default value is `1s`, minimum interval of restart.
max: The default value is `5m`, maximum interval of restart.
factor: The default value is `2`, factor of interval increase.

resources: Service instance resource limit configuration in docker container mode
cpu:

cpus: The percentage of CPU available of the service instance, for example `1.
→˓5`, means that `1.5` CPU cores can be used.

setcpus: The CPU core available for the service instance, for example `0-2`,
→˓means that `0` to `2` CPU cores can be used; `0` means that the 0th CPU core can be
→˓used; `1`, which means the 1st CPU core can be used.

memory:
limit: The available memory of the service, for example `500m`, means that

→˓500 megabytes of memory can be used.
swap: The swap space available to the service, for example `1g`, means that

→˓1G of memory can be used.
pids:
limit: Number of processes the service can create.

(continues on next page)

36 Chapter 6. Baetyl Configuration Interpretation

BAETYL Documentation

(continued from previous page)

volumes: Storage volume list
- name: [MUST] The volume name, must be unique in the list of storage volumes
path: [MUST] The path of the storage volume on the host, relative to the working

→˓directory of the Master

6.3 baetyl-agent Configuration

remote:
mqtt: MQTT channel configuration
clientid: [MUST] The Client ID, must be the id of cloud core device.
address: [MUST] The endpoint address for client to connect with cloud management

→˓suit, must use ssl endpoint.
username: [MUST] The client username, must be the username of cloud core device.
ca: [MUST] The CA path for client to connect with cloud management suit.
key: [MUST] The private key path for client to connect with cloud management suit.
cert: [MUST] The public key path for client to connect with cloud management suit.
timeout: The default value is `30s`, means timeout of the client connects to

→˓cloud.
interval: The default value is `1m`, means maximum interval of client

→˓reconnection, doubled from 500 microseconds to maximum.
keepalive: The default value is `1m`, means keep alive time between the client

→˓and cloud after connection has been established.
cleansession: The default value is `false`, , means whether keep session in cloud

→˓after client disconnected.
validatesubs: The default value is `false`, means whether the client checks the

→˓subscription result. If it is true, client exits and return errors when
→˓subscription is failure.

buffersize: The default value is `10`, means the size of the memory queue sent by
→˓the client to the cloud management suit. If found exception, the client will exit
→˓and lose message.
http: HTTPS channel configuration
address: This address is automatically inferred based on the address of the MQTT

→˓channel. No configuration required
timeout: The default value is `30s`, connection timeout period

report: Agent report configuration.
url: The report URL. No configuration required
topic: The template of report topic. No configuration required
interval: The default value is `20s`, interval of reporting.

desire: Agent desire configuration.
topic: The template of desire topic. No configuration required

6.4 baetyl-hub Configuration

listen: [MUST] Listening address, for example
- tcp://0.0.0.0:1883
- ssl://0.0.0.0:1884
- ws://:8080/mqtt
- wss://:8884/mqtt

certificate: SSL/TLS certificate authentication configuration, if `ssl` or `wss` is
→˓enabled, it must be configured.
ca: Server CA certificate path

(continues on next page)

6.3. baetyl-agent Configuration 37

BAETYL Documentation

(continued from previous page)

key: Server private key path
cert: Server public key path

principals: ACL configuration. If not configured, client cannot connect to this Hub,
→˓support username/password and certificate authentication.
- username: Username for client non-ssl connection
password: Password for client connection
permissions:

- action: Operation type of permission. `pub` means publish permission, `sub`
→˓means subscription permission.

permit: List of topics allowed by the operation type, support `+` and `#`
→˓wildcards.
- username: Username for client ssl connection
permissions:
- action: Operation type of permission. `pub` means publish permission, `sub`

→˓means subscription permission.
permit: List of topics allowed by the operation type, support `+` and `#`

→˓wildcards.
subscriptions: Topic routing configuration
- source:

topic: subscribe topic
qos: QoS of topic

target:
topic: publish topic
qos: QoS of topic

message: MQTT message related configuration
length:
max: The default value is `32k`, which means maximum message length that can be

→˓allowed to be transmitted. The maximum can be set to 268,435,455 Byte(about 256MB).
ingress: Message receive configuration
qos0:

buffer:
size: The default value is `10000`, means the number of messages that can be

→˓cached in memory with QoS0. Increasing the cache can improve the performance of
→˓message reception. If the device loses power, it will directly discard the message
→˓with QoS0.

qos1:
buffer:

size: The default value is `100`, means the message cache size of waiting
→˓for persistent with QoS1. Increasing the cache can improve the performance of
→˓message reception, but the potential risk is that the service will exit
→˓abnormally(such as device power failure), it will lose the cached message, and will
→˓not reply(puback). The service exits normally and waits for the cached message to
→˓be processed without losing data.

batch:
max: The default value is `50`, means the maximum number of messages with

→˓QoS1 can be insert into the database (persistence). After the message is persisted,
→˓it will reply with confirmation(ack).

cleanup:
retention: The default value is `48h`, means the time that the message with

→˓QoS1 can be saved in the database. Messages that exceed this time will be
→˓physically deleted during cleanup.

interval: The default value is `1m`, means cleanup interval with QoS1.
egress: Message publish configuration
qos0:

buffer:
size: The default value is `10000`, means the number of messages to be sent

→˓in the in-memory cache wit QoS0. If the device is powered off, the message will be
→˓discarded directly. After the buffer is full, the newly pushed message will be
→˓discarded directly.

(continues on next page)

38 Chapter 6. Baetyl Configuration Interpretation

BAETYL Documentation

(continued from previous page)

qos1:
buffer:

size: The default value is `100`, means the size of the message buffer is
→˓not confirmed(ack) after the message with QoS1 is sent. After the buffer is full,
→˓the new message is no longer read, and the message in the cache is always
→˓acknowledged(ack). After the message with QoS1 is sent to the client, it waits for
→˓the client to confirm(puback). If the client does not reply within the specified
→˓time, the message will be resent until the client replies or the session is closed.

batch:
max: The default value is `50`, means the maximum number of messages read

→˓from the database in batches.
retry:

interval: The default value is `20s`, means the re-publish interval of
→˓message.
offset: Message serial number persistence related configuration
buffer:

size: The default value is `10000`, means the size of the cache queue for the
→˓serial number of the message that was acknowledged(ack). For example, three
→˓messages with QoS1 and serial numbers 1, 2, and 3 are sent to the client in batches.
→˓ The client confirms the messages of sequence numbers 1 and 3. At this time,
→˓sequence number 1 will be queued and persisted. Although sequence number 3 has been
→˓confirmed, it still has to wait for the serial number 2 to be confirmed before
→˓entering the column. This design can ensure that the message can be recovered from
→˓the persistent serial number after the service restarts abnormally, ensuring that
→˓the message is not lost, but the message retransmission will occur, and therefore
→˓the message with QoS 2 is not supported.

batch:
max: The default value is `100`, means the maximum number of batches of

→˓message serial numbers can be insert into the database.
logger: Logger configuration

path: The default is `empty` (none configuration), that is, it does not write to
→˓the file. If the path is specified, it writes to the file.
level: The default value is `info`, log level, support `debug``info``warn` and

→˓`error`.
format: The default value is `text`, log print format, support `text` and `json`.
age:
max: The default value is `15`, means maximum number of days the log file is kept.

size:
max: The default value is `50`, log file size limit, default unit is `MB`.

backup:
max: The default value is `15`, the maximum number of log files to keep.

status: Service status configuration
logging:
enable: The default value is `false`, means whether to print baetyl status

→˓information.
interval: The default value is `60s`, means interval of printing baetyl status

→˓information.
storage: Database storage configuration

dir: The default value is `var/db/baetyl/data`, means database storage directory.
shutdown: Service exit configuration

timeout: The default value is `10m`, means timeout of service exit.

6.4. baetyl-hub Configuration 39

BAETYL Documentation

6.5 baetyl-function-manager Configuration

hub:
clientid: [MUST] The Client ID for the client to connect with the local Hub.
address: [MUST] The endpoint address for the client to connect with the local Hub.
username: The username for the client to connect with the local hub.
password: The password for the client to connect with the local hub.
ca: The CA path for the client to connect with the local hub.
key: The private key path for the client to connect with the local hub.
cert: The public key path for the client to connect with the local hub.
timeout: The default value is `30s`, means timeout of the client connection with

→˓the local hub.
interval: The default value is `1m`, means maximum interval of client reconnection,

→˓doubled from 500 microseconds to maximum.
keepalive: The default value is `1m`, means keep alive time between the client and

→˓the local hub after connection has been established.
cleansession: The default value is `false`, , means whether keep session in the

→˓local Hub after client disconnected.
validatesubs: The default value is `false`, means whether the client checks the

→˓subscription result. If it is true, client exits and return errors when
→˓subscription is failure.
buffersize: The default value is `10`, means the size of the memory queue sent by

→˓the client to the local Hub. If found exception, the client will exit and lose
→˓messages.
rules: Router rules configuration

- clientid: [MUST] The Client ID for client to connect with the local Hub
subscribe:

topic: [MUST] The message topic subscribed from the local Hub.
qos: The default value is `0`, the message QoS subscribed from the local Hub.

function:
name: [MUST] The name of the function that processes the message.

publish:
topic: [MUST] The message topic published to the local Hub.
qos: The default value is `0`, means the message QoS published to the local Hub.

functions:
- name: [MUST] The function name, must be unique in the function list.
service: [MUST] The service name which provides the function runtime instance.
instance: function instance configuration

min: The default value is `0`, means the minimum number of function instance.
→˓And the minimum configuration allowed to be set is `0`, the maximum configuration
→˓allowed to be set is `100`.

max: The default value is `1`, means the maximum number of function instance.
→˓And the minimum configuration allowed to be set is `1`, the maximum configuration
→˓allowed to be set is `100`.

idletime: The default value is `10m`, maximum idle time of function instance.
evicttime: The default value is `1m`, interval time between two evict

→˓operations.
message:

length:
max: The default value is `4m`, means the maximum message length allowed

→˓for function instances to be received and publish.
backoff:
max: The default value is `1m`, the maximum reconnection interval of the client

→˓connection function instance
timeout: The default value is `30s`, Client connection function instance timeout

40 Chapter 6. Baetyl Configuration Interpretation

BAETYL Documentation

6.6 baetyl-function-python Configuration

the configurations of the two modules are the same, so we can follow this sample
→˓below
server: GRPC Server configuration; Do not configure if the instances of this service
→˓are managed by baetyl-function-manager
address: GRPC Server address, <host>:<port>
workers:
max: The default value is the number of CPU core multiplied by 5, the maximum

→˓capacity of the thread pool
concurrent:
max: The default value is `empty`, means no limit, the maximum number of

→˓concurrent connections
message:
length:

max: The default value is `4m`, the maximum message length allowed for function
→˓instances to receive and send
ca: Server CA certificate path
key: Server private key path
cert: Server public key path

functions: function list
- name: [MUST] The function name, must be unique in the function list.
handler: [MUST] The function of Python code to handle message, for example,

→˓'sayhi.handler'
codedir: [MUST] The path of Python code

logger: Logger configuration
path: The default is `empty` (none configuration), that is, it does not write to

→˓the file. If the path is specified, it writes to the file.
level: The default value is `info`, log level, support `debug``info``warn` and

→˓`error`.
format: The default value is `text`, log print format, support `text` and `json`.
age:
max: The default value is `15`, means maximum number of days the log file is kept.

size:
max: The default value is `50`, log file size limit, default unit is `MB`.

backup:
max: The default value is `15`, the maximum number of log files to keep.

6.7 baetyl-remote-mqtt Configuration

hub:
clientid: [MUST] The Client ID for the client to connect with the local Hub.
address: [MUST] The endpoint address for the client to connect with the local Hub.
username: The username for the client to connect with the local hub.
password: The password for the client to connect with the local hub.
ca: The CA path for the client to connect with the local hub.
key: The private key path for the client to connect with the local hub.
cert: The public key path for the client to connect with the local hub.
timeout: The default value is `30s`, means timeout of the client connection with

→˓the local hub.
interval: The default value is `1m`, means maximum interval of client reconnection,

→˓doubled from 500 microseconds to maximum.
keepalive: The default value is `1m`, means keep alive time between the client and

→˓the local hub after connection has been established.

(continues on next page)

6.6. baetyl-function-python Configuration 41

BAETYL Documentation

(continued from previous page)

cleansession: The default value is `false`, , means whether keep session in the
→˓local Hub after client disconnected.
validatesubs: The default value is `false`, means whether the client checks the

→˓subscription result. If it is true, client exits and return errors when
→˓subscription is failure.
buffersize: The default value is `10`, means the size of the memory queue sent by

→˓the client to the local Hub. If found exception, the client will exit and lose
→˓messages.
rules: Message routing rules configuration

- hub:
clientid: The client ID for the client to connect with the local Hub.
subscriptions: The topics subscribed by client from Hub, for example

- topic: say
qos: 1

- topic: hi
qos: 0

remote:
name: [MUST] The remote name, must be one of the remote list
clientid: The client ID for the client to connect with remote Hub.
subscriptions: The topics subscribed by client from remote Hub, for example

- topic: remote/say
qos: 0

- topic: remote/hi
qos: 0

remotes: The remote list
- name: [MUST] The remote name, must be unique in this list.
clientid: The client ID for the client to connect with the remote Hub.
address: [MUST] The address for the client connect with the remote Hub.
username: The username for the client connect with the remote Hub.
password: The password for the client connect with the remote Hub.
ca: The CA path for the client connect with the remote Hub.
key: The private key path for the client connect with the remote Hub.
cert: The public key path for the client connect with the remote Hub.
timeout: The default value is `30s`, means timeout of the client connect to the

→˓remote Hub.
interval: The default value is `1m`, means maximum interval of client

→˓reconnection, doubled from 500 microseconds to maximum.
keepalive: The default value is `1m`, means keep alive time between the client

→˓and the local hub after connection has been established.
cleansession: The default value is `false`, , means whether keep session in the

→˓local Hub after client disconnected.
validatesubs: The default value is `false`, means whether the client checks the

→˓subscription result. If it is true, client exits and return errors when
→˓subscription is failure.

buffersize: The default value is `10`, means the size of the memory queue sent by
→˓the client to the local Hub. If found exception, the client will exit and lose
→˓messages.
logger: Logger configuration

path: The default is `empty` (none configuration), that is, it does not write to
→˓the file. If the path is specified, it writes to the file.
level: The default value is `info`, log level, support `debug``info``warn` and

→˓`error`.
format: The default value is `text`, log print format, support `text` and `json`.
age:
max: The default value is `15`, means maximum number of days the log file is kept.

size:
max: The default value is `50`, log file size limit, default unit is `MB`.

(continues on next page)

42 Chapter 6. Baetyl Configuration Interpretation

BAETYL Documentation

(continued from previous page)

backup:
max: The default value is `15`, the maximum number of log files to keep.

6.8 baetyl-timer Configuration

hub: Hub configuration
address: The address for the client to connect with the Hub.
username: The username for the client to connect with the Hub.
password: The password for the client to connect with the Hub.
clientid: The client id for the client to connect with the Hub.

timer: timer configuration
interval: Timing interval

publish:
topic: The message topic published to the Hub.
payload: The payload data, for example
id: 1

logger: Logger configuration
path: The default is `empty` (none configuration), that is, it does not write to

→˓the file. If the path is specified, it writes to the file.
level: The default value is `info`, log level, support `debug``info``warn` and

→˓`error`.

6.8. baetyl-timer Configuration 43

BAETYL Documentation

44 Chapter 6. Baetyl Configuration Interpretation

CHAPTER 7

Device connect to Baetyl with Hub service

Statement:

• The device system used in this test is Ubuntu 18.04

• MQTT.fx and MQTTBox are MQTT Clients in this test, which MQTT.fx used for TCP and SSL connection test
and MQTTBox used for WS (Websocket) connection test.

• The hub service image used is the official image published in the Baetyl Cloud Management Suite: hub.
baidubce.com/baetyl/baetyl-hub

• You can also compile the required Hub service image by using Baetyl source code. Please see How to build
image from source code

The complete configuration reference for Hub Module Configuration.

NOTEDarwin can install Baetyl by using Baetyl source code. Please see How to build image from source code.

7.1 Workflow

• Step 1: Install Baetyl and its example configuration, more details please refer to How-to-quick-install-Baetyl

• Step 2: Modify the configuration according to the usage requirements, and then execute sudo systemctl
start baetyl to start the Baetyl in Docker container mode, or execute sudo systemctl restart
baetyl to restart the Baetyl. Then execute the command sudo systemctl status baetyl to check
whether baetyl is running.

• Step 3: Configure the MQTT Client according to the connection protocol selected.

– If TCP protocol was selected, you only need to configure the username and password(see the configuration
option username and password of principals) and fill in the corresponding port.

– If SSL protocol was selected, username, private key, certificate and CA should be need. then fill in the
corresponding port;

– If WS protocol was selected, you only need to configure the username, password, and corresponding port.

45

BAETYL Documentation

• Step 4: If all the above steps are normal and operations are correct, you can check the connection status through
the log of Baetyl or MQTT Client.

7.2 Connection Test

If the Baetyl’s example configuration is installed according to Step 1, to modify the configuration of the application
and Hub service.

7.2.1 Baetyl Application Configuration

If the official installation method is used, replace the Baetyl application configuration with the following configuration:

/usr/local/var/db/baetyl/application.yml
version: v0
services:

- name: localhub
image: hub.baidubce.com/baetyl/baetyl-hub
replica: 1
ports:

- 1883:1883
- 8883:8883
- 8080:8080

mounts:
- name: localhub-conf

path: etc/baetyl
readonly: true

- name: localhub-cert
path: var/db/baetyl/cert
readonly: true

- name: localhub-data
path: var/db/baetyl/data

- name: localhub-log
path: var/log/baetyl

volumes:
- name: localhub-conf
path: var/db/baetyl/localhub-conf

- name: localhub-data
path: var/db/baetyl/localhub-data

- name: localhub-cert
path: var/db/baetyl/localhub-cert-only-for-test

- name: localhub-log
path: var/db/baetyl/localhub-log

Replace the configuration of the Baetyl Hub service with the following configuration:

/usr/local/var/db/baetyl/localhub-conf/service.yml
listen:

- tcp://0.0.0.0:1883
- ssl://0.0.0.0:8883
- ws://0.0.0.0:8080/mqtt

certificate:
ca: var/db/baetyl/cert/ca.pem
cert: var/db/baetyl/cert/server.pem
key: var/db/baetyl/cert/server.key

(continues on next page)

46 Chapter 7. Device connect to Baetyl with Hub service

BAETYL Documentation

(continued from previous page)

principals:
- username: two-way-tls
permissions:

- action: 'pub'
permit: ['tls/#']

- action: 'sub'
permit: ['tls/#']

- username: test
password: hahaha
permissions:
- action: 'pub'

permit: ['#']
- action: 'sub'

permit: ['#']
subscriptions:
- source:

topic: 't'
target:

topic: 't/topic'
logger:

path: var/log/baetyl/service.log
level: 'debug'

7.2.2 Baetyl Startup

According to Step 2, execute sudo systemctl start baetyl to start Baetyl in Docker mode and then exe-
cute the command sudo systemctl status baetyl to check whether baetyl is running. The normal situation
is shown as below.

Baetyl
status

NOTEDarwin can install Baetyl by using Baetyl source code, and excute sudo baetyl start to start the Baetyl
in Docker container mode.

Look at the log of the Baetyl master by executing sudo tail -f /usr/local/var/log/baetyl/
baetyl.log as shown below:

7.2. Connection Test 47

BAETYL Documentation

Baetyl
startup

As you can see, the image of Hub service has been loaded after Baetyl starts up normally. Alternatively, you can use
docker ps command to check which docker container is currently running.

docker
ps

Container mode requires port mapping, allowing external access to the container, the configuration item is the ports
field in the main program configuration file.

As mentioned above, when the Hub Module starts, it will open ports 1883, 8883 and 8080 at the same time, which are
used for TCP, SSL, WS (Websocket) protocol. Then we will use MQTTBox and MQTT.fx as MQTT client to check
the connection between MQTT client and Baetyl.

TCP Connection Test

Startup MQTT.fx, enter the Edit Connection Profiles page, fill in the Profile Name, Broker
Address and Port according to the connection configuration of Baetyl Hub service, and then configure the
username & password in User Credentials according to the principals configuration. Then click Apply
button to complete the connection configuration of MQTT.fx with TCP protocol.

48 Chapter 7. Device connect to Baetyl with Hub service

BAETYL Documentation

TCP
connection configuration

Then close the configuration page, select the Profile Name configured, then click Connect button, if the connection
configuration information matches the principals configuration of Baetyl Hub service, you can see the connection
success flag which as shown below.

7.2. Connection Test 49

BAETYL Documentation

TCP
connection success

SSL Connection Test

Startup MQTT.fx and enter the Edit Connection Profiles page. Similar to the TCP connection configuration, fill in the
profile name, broker address, and port. For SSL protocol, you need to fill in the username in User Credentials
and configure SSL/TLS option as shown below. Then click the Apply button to complete the connection configuration
of MQTT.fx in SSL connection method.

50 Chapter 7. Device connect to Baetyl with Hub service

BAETYL Documentation

SSL
connection configuration1

7.2. Connection Test 51

BAETYL Documentation

SSL
connection configuration2

Then close the configuration page, select the Profile Name configured, then click Connect button, if the connection
configuration information matches the principals configuration of Baetyl Hub service, you can see the connection
success flag which as shown below.

52 Chapter 7. Device connect to Baetyl with Hub service

BAETYL Documentation

SSL
connection success

WS (Websocket) Connection Test

Startup MQTTBox, enter the Client creation page, select the ws protocol, configure the broker address and port
according to the Baetyl Hub service, fill in the username and password according to the principals configuration
option, and click the save button. Then complete the connection configuration of MQTTBox in WS connection
method which as shown below.

WSWebsocketconnection
configuration

Once the above operation is correct, you can see the sign of successful connection with Baetyl Hub in MQTTBox,
which is shown in the figure as below.

7.2. Connection Test 53

BAETYL Documentation

WSWebsocketconnection
success

In summary, we successfully completed the connection test for the Baetyl Hub service through MQTT.fx and MQT-
TBox. In addition, we can also write test scripts to connect to Baetyl Hub through Paho MQTT. For details, please
refer to Related Resources Download.

54 Chapter 7. Device connect to Baetyl with Hub service

CHAPTER 8

Message transferring among devices with Local Hub Service

Statement

• The operating system as mentioned in this document is Ubuntu 18.04.

• The MQTT client toolkit as mentioned in this document is MQTTBox.

NOTEDarwin can install Baetyl by using Baetyl source code. Please see How to build image from source code.

Different from Device connect to Baetyl with Hub service, if you want to transfer MQTT messages among multiple
MQTT clients, you need to configure the connect information, topic permission, and router rules. More detailed
configuration of Hub service, please refer to Hub service configuration.

This document uses the TCP connection method as an example to test the message routing and forwarding capabilities
of the Hub service.

8.1 Workflow

• Step 1: Install Baetyl and its example configuration, more details please refer to How-to-quick-install-Baetyl

• Step 2: Modify the configuration according to the usage requirements, and then execute sudo systemctl
start baetyl to start the Baetyl in Docker container mode, or execute sudo systemctl restart
baetyl to restart the Baetyl. Then execute the command sudo systemctl status baetyl to check
whether baetyl is running.

• Step 3MQTTBox connect to Hub Service by TCP connection method, more detailed contents please refer to
Device connect to Baetyl with Hub service.

– If connect successfully, then subscribe the MQTT topic due to the configuration of Hub Service.

– If connect unsuccessfully, then retry Step 3 operation until it connect successfully.

• Step 4Check the publishing and receiving messages via MQTTBox.

55

../Resources.html#mqttbox-download
./Config-interpretation.html#local-hub-configuration

BAETYL Documentation

8.2 Message Routing Test

The Baetyl application configuration is replaced with the following configuration:

/usr/local/var/db/baetyl/application.yml
version: V2
services:

- name: hub
image: 'hub.baidubce.com/baetyl/baetyl-hub'
replica: 1
ports:

- '1883:1883'
mounts:

- name: localhub-conf
path: etc/baetyl
readonly: true

- name: localhub_data
path: var/db/baetyl/data

- name: log-V1
path: var/log/baetyl

volumes:
- name: localhub-conf
path: var/db/baetyl/localhub-conf/V1

- name: log-V1
path: var/db/baetyl/log

- name: localhub_data
path: var/db/baetyl/localhub_data

The Baetyl Hub service configuration is replaced with the following configuration:

/usr/local/var/db/baetyl/localhub-conf/service.yml
listen:

- tcp://0.0.0.0:1883
principals:

- username: 'test'
password: 'hahaha'
permissions:

- action: 'pub'
permit: ['#']

- action: 'sub'
permit: ['#']

subscriptions:
- source:

topic: 't'
target:

topic: 't/topic'
logger:

path: var/log/baetyl/service.log
level: 'debug'

As configured above, message routing rules depends on the subscriptions configuration item, which means that
messages published to the topic t will be forwarded to all devices(users, or mqtt clients) that subscribe the topic
t/topic.

NOTE: In the above configuration, the permitted topics which are configured in permit item support the + and #
wildcards configuration. More detailed contents of + and # wildcards will be explained as follows.

wildcard

56 Chapter 8. Message transferring among devices with Local Hub Service

BAETYL Documentation

For MQTT protocol, the number sign(# U+0023) is a wildcard character that matches any number of levels within
a topic. The multi-level wildcard represents the parent and any number of child levels. The multi-level wildcard
character MUST be specified either on its own or following a topic level separator(/ U+002F). In either case it MUST
be the last character specified in the topic.

For example, the configuration of permit item of sub action is sport/tennis/player1/#, it would receive
messages published using these topic names:

• sport/tennis/player1

• sport/tennis/player1/ranking

• sport/tennis/player1/score/wimbledon

Besides, topic sport/# also matches the singular sport, since # includes the parent level.

For Baetyl, if the topic # is configured in the permit item list(whether pub action or sub action), there is no need
to configure any other topics. And the specified account(depends on username/password) will have permission
to all legal topics of MQTT protocol.

+ wildcard

As described in the MQTT protocol, the plus sign(+ U+002B) is a wildcard character that matches only one topic
level. The single-level wildcard can be used at any level in the topic, including first and last levels. Where it is used
it MUST occupy an entire level of the topic. It can be used at more than one level in the topic and can be used in
conjunction with the multi-level wildcard.

For example, topic sport/tennis/+ matches sport/tennis/player1 and sport/tennis/player2,
but not sport/tennis/player1/ranking. Also, because the single-level wildcard matches only a single level,
sport/+ does not match sport but it does match sport/.

For Baetyl, if the topic + is configured in the permit item list(whether pub action or sub action), the specified
account(depends on username/password) will have permission to all single-level legal topics of MQTT protocol.

NOTE: For MQTT protocol, wildcard ONLY can be used in Topic Filter(sub action), and MUST NOT be used
in Topic Name(pub action). But in the design of Baetyl, in order to enhance the flexibility of the topic permissions
configuration, wildcard configured in permit item(whether in pub action or sub action) is valid, as long as the topic
of the published or subscribed meets the requirements of MQTT protocol is ok. In particular, wildcards (# and +)
policies are recommended for developers who need to configure a large number of publish and subscribe topics in the
principals configuration.

8.2.1 Message Transfer Test Among Devices

The message transferring and routing workflow among devices are as follows:

Message

8.2. Message Routing Test 57

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

BAETYL Documentation

transfer test among devices

Specifically, as shown in the above figure, client1, client2, and client3 respectively establish a connection to Baetyl
with Hub Service, client1 has the permission to publish messages to the topic t, and client2 and client3 respectively
have the permission to subscribe topic t and t/topic.

Once the connection to Baetyl for the above three clients with Hub Service is established, as the configuration of the
above three clients, client2 and client3 will respectively get the message from client1 published to the topic t to Hub
Service.

In particular, client1, client2, and client3 can be combined into one client, and the new client will have the permission
to publish messages to the topic t, with permissions to subscribe messages to the topic t and t/topic. Here, using
MQTTBox as the new client, click the Add subscriber button to subscribe the topic t and t/topic.

Then clicks the Publish button to publish message with the payload This is a new message. and with
the topic t to Hub service, you will find this message is received by MQTTBox with the subscribed topics t and
t/topic. More detailed contents are as below.

MQTTBox
received message successfully

In summary, the message forwarding and routing test between devices based on Hub service is completed through
MQTTBox.

58 Chapter 8. Message transferring among devices with Local Hub Service

CHAPTER 9

Message handling with Local Function Service

Statement

• The operating system as mentioned in this document is Ubuntu 18.04.

• The version of runtime is Python3.6, and for Python2.7, configuration is the same except fot the language
difference when coding the scripts

• The MQTT client toolkit as mentioned in this document is MQTTBox.

• The docker image used in this document is compiled from the Baetyl source code. More detailed contents please
refer to Build Baetyl from source.

• In this article, the service created based on the Hub service is called Hub service.

NOTEDarwin can install Baetyl by using Baetyl source code. Please see How to build image from source code.

Different from the Hub service to transfer message among devices(mqtt clients), this document describes the message
handling with Local Function Manager service(also include Hub service and Python3.6 runtime service). In the
document, Hub service is used to establish connection between Baetyl and mqtt client, Python3.6 runtime service
is used to handle MQTT messages, and the Local Function Manager service is used to combine Hub service with
Python3.6 runtime service with message context.

This document will take the TCP connection method as an example to show the message handling, calculation and
forwarding with Local Function Manager service.

9.1 Workflow

• Step 1: Install Baetyl and its example configuration, more details please refer to How-to-quick-install-Baetyl

• Step 2: Modify the configuration according to the usage requirements, and then execute sudo systemctl
start baetyl to start the Baetyl in Docker container mode, or execute sudo systemctl restart
baetyl to restart the Baetyl. Then execute the command sudo systemctl status baetyl to check
whether baetyl is running.

59

../Resources.html#mqttbox-download

BAETYL Documentation

• Step 3MQTTBox connect to Hub Service by TCP connection method, more detailed contents please refer to
Device connect to Baetyl with Hub service

– If connect successfully, then subscribe the MQTT topic due to the configuration of Hub Service, and
observe the log of Baetyl.

* If the Baetyl’s log shows that the Python Runtime Service has been started, it indicates that the pub-
lished message was handled by the specified function.

* If the Baetyl’s log shows that the Python Runtime Service has not been started, then retry it until the
Python Runtime Service has been started.

– If connect unsuccessfully, then retry Step 3 operation until it connect successfully

• Step 4Check the publishing and receiving messages via MQTTBox.

Workflow
of using Local Function Manager Service to handle MQTT messages

9.2 Message Handling Test

If the Baetyl’s example configuration is installed according to Step 1, to modify the configuration of the application,
Hub service and function services.

Change the Baetyl application configuration to the following configuration:

/usr/local/var/db/baetyl/application.yml
version: v0
services:

- name: localhub
image: hub.baidubce.com/baetyl/baetyl-hub
replica: 1
ports:

- 1883:1883

(continues on next page)

60 Chapter 9. Message handling with Local Function Service

BAETYL Documentation

(continued from previous page)

mounts:
- name: localhub-conf

path: etc/baetyl
readonly: true

- name: localhub-data
path: var/db/baetyl/data

- name: localhub-log
path: var/log/baetyl

- name: function-manager
image: hub.baidubce.com/baetyl/baetyl-function-manager
replica: 1
mounts:

- name: function-manager-conf
path: etc/baetyl
readonly: true

- name: function-manager-log
path: var/log/baetyl

- name: function-python27-sayhi
image: hub.baidubce.com/baetyl/baetyl-function-python27
replica: 0
mounts:

- name: function-sayhi-conf
path: etc/baetyl
readonly: true

- name: function-sayhi-code
path: var/db/baetyl/function-sayhi
readonly: true

- name: function-python36-sayhi
image: hub.baidubce.com/baetyl/baetyl-function-python36
replica: 0
mounts:

- name: function-sayhi-conf
path: etc/baetyl
readonly: true

- name: function-sayhi-code
path: var/db/baetyl/function-sayhi
readonly: true

- name: function-node85-sayhi
image: hub.baidubce.com/baetyl/baetyl-function-node85
replica: 0
mounts:

- name: function-sayjs-conf
path: etc/baetyl
readonly: true

- name: function-sayjs-code
path: var/db/baetyl/function-sayhi
readonly: true

- name: function-sql-filter
image: hub.baidubce.com/baetyl/baetyl-function-sql
replica: 0
mounts:

- name: function-filter-conf
path: etc/baetyl
readonly: true

volumes:
hub
- name: localhub-conf

(continues on next page)

9.2. Message Handling Test 61

BAETYL Documentation

(continued from previous page)

path: var/db/baetyl/localhub-conf
- name: localhub-data
path: var/db/baetyl/localhub-data

- name: localhub-cert
path: var/db/baetyl/localhub-cert-only-for-test

- name: localhub-log
path: var/db/baetyl/localhub-log

function
- name: function-manager-conf
path: var/db/baetyl/function-manager-conf

- name: function-manager-log
path: var/db/baetyl/function-manager-log

- name: function-sayhi-conf
path: var/db/baetyl/function-sayhi-conf

- name: function-sayhi-code
path: var/db/baetyl/function-sayhi-code

- name: function-sayjs-conf
path: var/db/baetyl/function-sayjs-conf

- name: function-sayjs-code
path: var/db/baetyl/function-sayjs-code

- name: function-filter-conf
path: var/db/baetyl/function-filter-conf

Change the Baetyl Hub service configuration to the following configuration:

/usr/local/var/db/baetyl/localhub-conf/service.yml
listen:

- tcp://0.0.0.0:1883
principals:

- username: test
password: hahaha
permissions:

- action: 'pub'
permit: ['#']

- action: 'sub'
permit: ['#']

subscriptions:
- source:

topic: 't'
target:

topic: 't/topic'
logger:

path: var/log/baetyl/service.log
level: "debug"

The configuration of the Baetyl local function services do not need to be modified. The specific configuration is as
follows:

/usr/local/var/db/baetyl/function-manager-conf/service.yml
hub:

address: tcp://localhub:1883
username: test
password: hahaha

rules:
- clientid: func-python27-sayhi-1
subscribe:

(continues on next page)

62 Chapter 9. Message handling with Local Function Service

BAETYL Documentation

(continued from previous page)

topic: t
function:

name: python27-sayhi
publish:
topic: t/py2hi

- clientid: func-sql-filter-1
subscribe:
topic: t
qos: 1

function:
name: sql-filter

publish:
topic: t/sqlfilter
qos: 1

- clientid: func-python36-sayhi-1
subscribe:

topic: t
function:

name: python36-sayhi
publish:
topic: t/py3hi

- clientid: func-node85-sayhi-1
subscribe:
topic: t

function:
name: node85-sayhi

publish:
topic: t/node8hi

functions:
- name: python27-sayhi
service: function-python27-sayhi
instance:

min: 0
max: 10

- name: sql-filter
service: function-sql-filter

- name: python36-sayhi
service: function-python36-sayhi

- name: node85-sayhi
service: function-node85-sayhi

logger:
path: var/log/baetyl/service.log
level: "debug"

/usr/local/var/db/baetyl/function-filter-conf/service.yml
functions:
- name: sql-filter
handler: 'select qos() as qos, topic() as topic, * where id < 10'

/usr/local/var/db/baetyl/function-sayhi-conf/service.yml
functions:
- name: 'python27-sayhi'
handler: 'index.handler'
codedir: 'var/db/baetyl/function-sayhi'

- name: 'python36-sayhi'
handler: 'index.handler'
codedir: 'var/db/baetyl/function-sayhi'

(continues on next page)

9.2. Message Handling Test 63

BAETYL Documentation

(continued from previous page)

/usr/local/var/db/baetyl/function-sayjs-conf/service.yml
functions:
- name: 'node85-sayhi'
handler: 'index.handler'
codedir: 'var/db/baetyl/function-sayhi'

Python function code does not need to be changed. /usr/local/var/db/baetyl/
function-sayhi-code/index.py is implemented as follows:

#!/usr/bin/env python
-*- coding:utf-8 -*-
"""
function to say hi in python
"""

def handler(event, context):
"""
function handler
"""
res = {}
if isinstance(event, dict):

if "err" in event:
raise TypeError(event['err'])

res = event
elif isinstance(event, bytes):

res['bytes'] = event.decode("utf-8")

if 'messageQOS' in context:
res['messageQOS'] = context['messageQOS']

if 'messageTopic' in context:
res['messageTopic'] = context['messageTopic']

if 'messageTimestamp' in context:
res['messageTimestamp'] = context['messageTimestamp']

if 'functionName' in context:
res['functionName'] = context['functionName']

if 'functionInvokeID' in context:
res['functionInvokeID'] = context['functionInvokeID']

res['Say'] = 'Hello Baetyl'
return res

The Node function code does not need to be changed. /usr/local/var/db/baetyl/
function-sayjs-code/index.js is implemented as follows:

#!/usr/bin/env node

const hasAttr = (obj, attr) => {
if (obj instanceof Object && !(obj instanceof Array)) {

if (obj[attr] != undefined) {
return true;

}
}
return false;

};

(continues on next page)

64 Chapter 9. Message handling with Local Function Service

BAETYL Documentation

(continued from previous page)

const passParameters = (event, context) => {
if (hasAttr(context, 'messageQOS')) {

event['messageQOS'] = context['messageQOS'];
}
if (hasAttr(context, 'messageTopic')) {

event['messageTopic'] = context['messageTopic'];
}
if (hasAttr(context, 'messageTimestamp')) {

event['messageTimestamp'] = context['messageTimestamp'];
}
if (hasAttr(context, 'functionName')) {

event['functionName'] = context['functionName'];
}
if (hasAttr(context, 'functionInvokeID')) {

event['functionInvokeID'] = context['functionInvokeID'];
}

};

exports.handler = (event, context, callback) => {
// support Buffer & json object
if (Buffer.isBuffer(event)) {

const message = event.toString();
event = {}
event["bytes"] = message;

}
else if("err" in event) {

return callback(new TypeError(event['err']))
}

passParameters(event, context);
event['Say'] = 'Hello Baetyl'
callback(null, event);

};

As configured above, if the MQTTBox has established a connection with the Hub service based on the above
configuration, a message with the topic t is sent to the Hub, and the function service will route the message to
python27-sayhi, python36-sayhi, node85-sayhi and sql-filter functions to process, and messages
with topic t/py2hi, t/py3hi, t/node8hi, and t/sqlfilter are output separately. At this time, the MQTT
client subscribed to the topic # will receive these messages, as well as the original message t and the message with
topic t/topic which is renamed by Hub service directly .

NOTE: Any function that appears in the rules configuration must be configured in the functions configuration,
otherwise the function runtime instances can not be started normally.

9.2.1 Baetyl Start

According to Step 2, execute sudo systemctl start baetyl to start Baetyl in Docker mode and then
execute the command sudo systemctl status baetyl to check whether baetyl is running.

NOTEDarwin can install Baetyl by using Baetyl source code, and excute sudo baetyl start to start the Baetyl
in Docker container mode.

Look at the log of the Baetyl master by executing sudo tail -f -n 40 /usr/local/var/log/baetyl/
baetyl.log as shown below:

9.2. Message Handling Test 65

BAETYL Documentation

Baetyl
start

Also, we can execute the command docker ps to view the list of docker containers currently running.

View
the list of docker containers currently running

After comparison, it is not difficult to find that the Hub service and the function service have been successfully loaded
when Baetyl starts. The function runtime instance is not started because the function runtime instance is dynamically
started by function service when a message is triggered.

9.2.2 MQTTBox Establish Connection

In this test, we configured the connection information of MQTTBox by TCP connection, and then clicked the Add
subscriber button to subscribe to the topic #, which is used to receive all messages received by the Hub services.

9.2.3 Message Handling Check

By looking at the /usr/local/var/db/baetyl/function-sayhi-code/index.py code file, you can
see that after receiving a message, the function handler will perform a series of processes and return the result. The
returned results include some context information, such as messageTopic, functionName, and so on.

Here, we publish the message {"id":1} with the topic t to Hub service via MQTTBox, and then observe the
receiving messages as follows.

66 Chapter 9. Message handling with Local Function Service

BAETYL Documentation

MQTTBox
received messages

After sending the message, we quickly execute the command docker ps to see the list of the currently running
containers. All function runtime service instances are started. The result is shown below.

View
the list of docker containers

In summary, we simulated the process of local processing of messages through the Hub service and function services.
It can be seen that the framework is very suitable to process message flows at edge.

9.2. Message Handling Test 67

BAETYL Documentation

68 Chapter 9. Message handling with Local Function Service

CHAPTER 10

Message Synchronize between Baetyl-Hub and Baidu IoTHub via
Baetyl-Remote-MQTT module

Statement

• The operating system as mentioned in this document is Ubuntu18.04.

• It should be installed for Baetyl when you read this document, more details please refer to Quick-install-Baetyl

• The MQTT client toolkit which is used to connect to Baidu IoTHub is MQTT.fx

• The MQTT client toolkit which is used to connect to Baetyl-Hub is MQTTBox.

• The hub and Baetyl-Remote-MQTT module images used have published by BIE Cloud Manage-
ment Suite: hub.baidubce.com/baetyl/baetyl-hub:latesthub.baidubce.com/baetyl/
baetyl-remote-mqtt:latest

• Docker images compiled from the Baetyl source code also can be used. More detailed contents please refer to
Build Baetyl from source

• The Remote Hub as mentioned in this document is Baidu IoTHub

The Baetyl-Remote-MQTT module was developed to meet the needs of the IoT scenario. The Baetyl(via Baetyl-
Hub module) can synchronize message with Remote Hub services(Baidu IoTHub) via the Baetyl-Remote-MQTT
module. That is to say, through the Baetyl-Remote-MQTT module, we can either subscribe the message from Remote
Hub and publish it to the Baetyl-Hub module or subscribe the message from Baetyl-Hub module and publish it to
Remote Hub service. The configuration of Baetyl-Remote-MQTT module can refer to Baetyl-Remote-MQTT module
Configuration.

10.1 Workflow

• Step 1Create device(MQTT client) connection info(include endpoint, user, principal, policy, etc.)
via Baidu IoTHub.

• Step 2Select MQTT.fx as the MQTT client that used to connect to Baidu IoTHub.

– If connect successfully, then do the following next.

69

../Resources.html#mqtt-fx-download
../Resources.html#mqttbox-download
https://cloud.baidu.com/product/bie.html
https://cloud.baidu.com/product/bie.html
https://cloud.baidu.com/product/iot.html
https://cloud.baidu.com/product/iot.html

BAETYL Documentation

– If connect unsuccessfully, then retry it until it connect successfully. More detailed contents can refer to
How to connect to Baidu IoTHub via MQTT.fx

• Step 3Startup Baetyl in docker container mode, and observe the log of Baetyl.

– If the Baetyl-Hub module and Baetyl-Remote-MQTT module start successfully, then do the following
next.

– If the Baetyl-Hub module and Baetyl-Remote-MQTT module start unsuccessfully, then retry Step 3
until they start successfully.

• Step 4Select MQTTBox as the MQTT client that used to connect to the Baetyl-Hub.

– If connect successfully, then do the following next.

– If connect unsuccessfully, then retry Step 4 until it connect successfully.

• Step 5Due to the configuration of Baetyl-Remote-MQTT module, using MQTTBox publish message to the
specified topic, and observing the receiving message via MQTT.fx. Similarly, using MQTT.fx publish message
to the specified topic, and observing the receiving message via MQTTBox.

• Step 6If both parties in Step 5 can receive the message content posted by the other one, it indicates the Remote
function test passes smoothly.

The workflow diagram are as follows.

using
Baetyl-Remote-MQTT module to synchronize message

10.2 Message Synchronize via Baetyl-Remote-MQTT module

Configuration file location for the Baetyl main program is: var/db/baetyl/application.yml.

The configuration of Baetyl Master are as follows:

version: v0
services:

- name: localhub
image: hub.baidubce.com/baetyl/baetyl-hub:latest
replica: 1

(continues on next page)

70 Chapter 10. Message Synchronize between Baetyl-Hub and Baidu IoTHub via
Baetyl-Remote-MQTT module

https://cloud.baidu.com/doc/IOT/s/Sjwvy72aq

BAETYL Documentation

(continued from previous page)

ports:
- 1883:1883

mounts:
- name: localhub-conf

path: etc/baetyl
readonly: true

- name: localhub-data
path: var/db/baetyl/data

- name: localhub-log
path: var/log/baetyl

- name: remote-iothub
image: hub.baidubce.com/baetyl/baetyl-remote-mqtt:latest
replica: 1
mounts:

- name: remote-iothub-conf
path: etc/baetyl
readonly: true

- name: remote-iothub-cert
path: var/db/baetyl/cert
readonly: true

- name: remote-iothub-log
path: var/log/baetyl

volumes:
hub
- name: localhub-conf
path: var/db/baetyl/localhub-conf

- name: localhub-data
path: var/db/baetyl/localhub-data

- name: localhub-log
path: var/db/baetyl/localhub-log

remote mqtt
- name: remote-iothub-conf
path: var/db/baetyl/remote-iothub-conf

- name: remote-iothub-cert
path: var/db/baetyl/remote-iothub-cert

- name: remote-iothub-log
path: var/db/baetyl/remote-iothub-log

Configuration file location for Baetyl-Hub module is: var/db/baetyl/localhub-conf/service.yml.

The configuration of Baetyl-Hub module is as follow:

listen:
- tcp://0.0.0.0:1883

principals:
- username: test
password: hahaha
permissions:

- action: 'pub'
permit: ['#']

- action: 'sub'
permit: ['#']

logger:
path: var/log/baetyl/localhub-service.log
level: "debug"

Configuration file location for Baetyl-Remote-MQTT module is: var/db/baetyl/remote-iothub-conf/
service.yml.

10.2. Message Synchronize via Baetyl-Remote-MQTT module 71

BAETYL Documentation

The configuration of Baetyl-Remote-MQTT module is as follow:

name: remote-iothub
hub:

address: tcp://localhub:1883
username: test
password: hahaha

remotes:
- name: iothub
address: 'ssl://xxxxxx.mqtt.iot.bj.baidubce.com:1884'
clientid: remote-iothub-1
username: xxxx/test
ca: var/db/baetyl/cert/ca.pem
cert: var/db/baetyl/cert/client.pem
key: var/db/baetyl/cert/client.key

rules:
- hub:

subscriptions:
- topic: t1

remote:
name: iothub
subscriptions:

- topic: t2
qos: 1

logger:
path: var/log/baetyl/remote-service.log
level: 'debug'

According to the configuration of the above, it means that the Baetyl-Remote-MQTT module subscribes the topic t1
from the Baetyl-Hub module, subscribes the topic t2 from Baidu IoTHub. When MQTTBox publishes a message to
the topic t1, the Baetyl-Hub module will receive this message and forward it to Baidu IoTHub via Baetyl-Remote-
MQTT module, and MQTT.fx will also receive this message(suppose MQTT.fx has already subscribed the topic t1
before) from Baidu IoTHub. Similarly, When we use MQTT.fx to publish a message to the topic t2, then Baidu Io-
THub will receive it and forward it to the Baetyl-Hub module via Baetyl-Remote-MQTT module. Finally, MQTTBox
will receive this message(suppose MQTTBox has already subscribed the topic t2 before).

In a word, from MQTTBox publishes a message to the topic t1, to MQTT.fx receives the message, the routing path
of the message are as follows.

MQTTBox -> Baetyl-Hub module -> Baetyl-Remote-MQTT module -> Baidu IoTHub -> MQTT.fx

Similarly, from MQTT.fx publishes a message to the topic t2, to MQTTBox receives the message, the routing path
of the message are as follows.

MQTT.fx -> Baidu IoTHub -> Baetyl-Remote-MQTT module -> Baetyl-Hub module -> MQTTBox

10.2.1 Establish a Connection between MQTT.fx and Baidu IoTHub

As described in Step 1, Step 2, the detailed contents of the connection between MQTT.fx and Baidu IoTHub
are as follows.

72 Chapter 10. Message Synchronize between Baetyl-Hub and Baidu IoTHub via
Baetyl-Remote-MQTT module

BAETYL Documentation

Create
endpoint via Baidu IoTHub

Configuration
of MQTT.fx

After set the configuration of MQTT.fx, click OK or Apply button, then click Connect button, and wait for the
connecting. Also, we can check if the connection status is OK via the color button. When the button’s color change to
Green, that is to say, the connection is established. Then switch to the Subscribe page and subscribe the topic t1.
More detailed contents are shown below.

10.2. Message Synchronize via Baetyl-Remote-MQTT module 73

BAETYL Documentation

Successfully
establish a connection between MQTT.fx and Baidu IoTHub

10.2.2 Establish a Connection between MQTTBox and the Baetyl-Hub module

As described in Step 3, the Baetyl-Hub module and Baetyl-Remote-MQTT module also loaded when Baetyl started.
Also, we can lookup the running status of Baetyl through the command sudo systemctl status baetyl.

lookup
the running status of Baetyl

In addition, we can execute the command docker stats to view the list of docker containers currently running on
the system.

View
the list of docker containers currently running

After Baetyl successfully startup, set the configuration of connection, then establish the connection with the Baetyl-
Hub module and subscribe the topic t2.

74 Chapter 10. Message Synchronize between Baetyl-Hub and Baidu IoTHub via
Baetyl-Remote-MQTT module

BAETYL Documentation

MQTTBox
successfully subscribe the topic t2

10.2.3 Message Synchronize Test

Here, MQTT.fx and MQTTBox will be used as message publishers, and the other one will be used as a message
receiver.

MQTT.fx publishes message, and MQTTBox receives message

Firstly, using MQTT.fx publishes a message This message is from MQTT.fx. to the topic t2.

Publishing
a message to the topic t2 via MQTT.fx

At the same time, observing the message receiving status of MQTTBox via the topic t2.

10.2. Message Synchronize via Baetyl-Remote-MQTT module 75

BAETYL Documentation

MQTTBox
successfully received the message

MQTTBox publishes message, and MQTT.fx receives message

Similarly, publishing the message This message is from MQTTBox. to the topic t1 via MQTTBox.

Publishing
a message to the topic t1 via MQTTBox

Then we can observe the message receiving status of MQTT.fx via the topic t1.

76 Chapter 10. Message Synchronize between Baetyl-Hub and Baidu IoTHub via
Baetyl-Remote-MQTT module

BAETYL Documentation

MQTT.fx
successfully received the message

In summary, both MQTT.fx and MQTTBox have correctly received the specified message, and the content is consis-
tent.

10.2. Message Synchronize via Baetyl-Remote-MQTT module 77

BAETYL Documentation

78 Chapter 10. Message Synchronize between Baetyl-Hub and Baidu IoTHub via
Baetyl-Remote-MQTT module

CHAPTER 11

How to write a python script for Python runtime

Statement

• The operating system as mentioned in this document is Ubuntu16.04.

• The version of runtime is Python3.6, and for Python2.7, configuration is the same except for the language
difference when coding the scripts

• The MQTT client toolkit as mentioned in this document is MQTTBox.

• In this article, the service created based on the Hub module is called localhub service. And for the test
case mentioned here, the localhub service, function calculation service, and other services are configured as
follows:

The configuration of Local Hub service
Configuration file location is: `var/db/baetyl/localhub-conf/service.yml`.
listen:

- tcp://0.0.0.0:1883
principals:

- username: 'test'
password: 'hahaha'
permissions:

- action: 'pub'
permit: ['#']

- action: 'sub'
permit: ['#']

The configuration of Local Function Manager service
Configuration file location is: var/db/baetyl/function-manager-conf/service.yml
hub:

address: tcp://localhub:1883
username: test
password: hahaha

rules:
- clientid: localfunc-1
subscribe:

(continues on next page)

79

../Resources.html#mqttbox-download

BAETYL Documentation

(continued from previous page)

topic: py
function:

name: sayhi3
publish:
topic: py/hi

functions:
- name: sayhi3
service: function-sayhi3
instance:

min: 0
max: 10
idletime: 1m

The configuration of python function runtime
Configuration file location is: var/db/baetyl/function-sayhi-conf/service.yml
functions:
- name: 'sayhi3'
handler: 'sayhi.handler'
codedir: 'var/db/baetyl/function-sayhi'

The configuration of application.yml
Configuration file location is: var/db/baetyl/application.yml
version: v0
services:

- name: localhub
image: hub.baidubce.com/baetyl/baetyl-hub
replica: 1
ports:

- 1883:1883
mounts:

- name: localhub-conf
path: etc/baetyl
readonly: true

- name: localhub-data
path: var/db/baetyl/data

- name: localhub-log
path: var/log/baetyl

- name: function-manager
image: hub.baidubce.com/baetyl/baetyl-function-manager
replica: 1
mounts:

- name: function-manager-conf
path: etc/baetyl
readonly: true

- name: function-manager-log
path: var/log/baetyl

- name: function-sayhi3
image: hub.baidubce.com/baetyl/baetyl-function-python36
replica: 0
mounts:

- name: function-sayhi-conf
path: etc/baetyl
readonly: true

- name: function-sayhi-code
path: var/db/baetyl/function-sayhi
readonly: true

volumes:
(continues on next page)

80 Chapter 11. How to write a python script for Python runtime

BAETYL Documentation

(continued from previous page)

hub
- name: localhub-conf
path: var/db/baetyl/localhub-conf

- name: localhub-data
path: var/db/baetyl/localhub-data

- name: localhub-log
path: var/db/baetyl/localhub-log

function manager
- name: function-manager-conf
path: var/db/baetyl/function-manager-conf

- name: function-manager-log
path: var/db/baetyl/function-manager-log

function python runtime sayhi
- name: function-sayhi-conf
path: var/db/baetyl/function-sayhi-conf

- name: function-sayhi-code
path: var/db/baetyl/function-sayhi-code

Baetyl officially provides the Python runtime to load python scripts written by users. The following description is
about the name of the python script, the execution function name, input, output parameters, and so on.

11.1 Function Name Convention

The name of a python script can refer to Python’s universal naming convention, which Baetyl does not specifically
limit. If you want to apply a python script to handle an MQTT message, the configuration of Python3.6 runtime service
is as follows:

functions:
- name: 'sayhi3'
handler: 'sayhi.handler'
codedir: 'var/db/baetyl/function-sayhi'

Here, we focus on the handler attribute, where sayhi represents the script name and the handler represents the
entry function called in the file.

function-sayhi-code/
__init__.py
sayhi.py

More detailed configuration of Python runtime, please refer to Python runtime configuration.

11.2 Parameter Convention

def handler(event, context):
do something
return event

The Python runtime provided by Baetyl supports two parameters: event and context, which are described sepa-
rately below.

• eventDepend on the Payload in the MQTT message

11.1. Function Name Convention 81

BAETYL Documentation

– If the original Payload is a json format data, then pass in the data handled by json.
loads(Payload)

– If the original Payload is Byte, string(not Json), then pass in the original Payload

• contextMQTT message context

– context.messageQOS // MQTT QoS

– context.messageTopic // MQTT Topic

– context.functionName // MQTT functionName

– context.functionInvokeID //MQTT function invokeID

– context.invokeid // as above, be used to compatible with CFC

NOTE: When testing in the cloud CFC, please don’t use the context defined by Baetyl directly. The recommended
method is to first determine whether the field is exists or not in the context. If exists, read it.

11.3 Hello World

Now we will implement a simple python script with the goal of appending a hello world message to each MQTT
message. For a dictionary format message, return it directly, and for an none dictionary format message, convert it to
string and return.

#!/usr/bin/env python3
-*- coding: utf-8 -*-

def handler(event, context):
result = {}
if isinstance(event, dict):

result['msg'] = event
result['type'] = 'dict'
result['say'] = 'hello world'

else:
result['msg'] = event.decode("utf-8")
result['type'] = 'non-dict'
result['say'] = 'hello world'

return result

Publish a dict format message:

82 Chapter 11. How to write a python script for Python runtime

https://cloud.baidu.com/product/cfc.html

BAETYL Documentation

Publish
a dict format message

Publish an non-dict format message:

11.3. Hello World 83

BAETYL Documentation

Publish
an non-dict format message

As above, for some general needs, we can implement it through the Python Standard Library. However, for some more
complex demands, it is often necessary to import third-party libraries to complete. How to solve the problem? We’ve
provided a general solution in How to import third-party libraries for Python runtime.

84 Chapter 11. How to write a python script for Python runtime

CHAPTER 12

How to write a javascript for Node runtime

Statement

• The operating system as mentioned in this document is Ubuntu16.04.

• The version of runtime is Node8.5

• The MQTT client toolkit as mentioned in this document is MQTTBox.

• In this article, the service created based on the Hub module is called localhub service. And for the test
case mentioned here, the localhub service, function calculation service, and other services are configured as
follows:

The configuration of Local Hub service
Configuration file location is: var/db/baetyl/localhub-conf/service.yml
listen:

- tcp://0.0.0.0:1883
principals:

- username: 'test'
password: 'hahaha'
permissions:

- action: 'pub'
permit: ['#']

- action: 'sub'
permit: ['#']

The configuration of Local Function Manager service
Configuration file location is: var/db/baetyl/function-manager-conf/service.yml
hub:

address: tcp://localhub:1883
username: test
password: hahaha

rules:
- clientid: localfunc-1
subscribe:

topic: node
function:

(continues on next page)

85

../Resources.html#mqttbox-download

BAETYL Documentation

(continued from previous page)

name: sayhi
publish:
topic: t/hi

functions:
- name: sayhi
service: function-sayhi
instance:

min: 0
max: 10
idletime: 1m

The configuration of Node function runtime
Configuration file location is: var/db/baetyl/function-sayjs-conf/service.yml
functions:
- name: 'sayhi'
handler: 'index.handler'
codedir: 'var/db/baetyl/function-sayhi'

The configuration of application.yml
Configuration file location is: var/db/baetyl/application.yml
version: v0
services:

- name: localhub
image: hub.baidubce.com/baetyl/baetyl-hub
replica: 1
ports:

- 1883:1883
mounts:

- name: localhub-conf
path: etc/baetyl
readonly: true

- name: localhub-data
path: var/db/baetyl/data

- name: localhub-log
path: var/log/baetyl

- name: function-manager
image: hub.baidubce.com/baetyl/baetyl-function-manager
replica: 1
mounts:

- name: function-manager-conf
path: etc/baetyl
readonly: true

- name: function-manager-log
path: var/log/baetyl

- name: function-sayhi
image: hub.baidubce.com/baetyl/baetyl-function-node85
replica: 0
mounts:

- name: function-sayjs-conf
path: etc/baetyl
readonly: true

- name: function-sayjs-code
path: var/db/baetyl/function-sayhi
readonly: true

volumes:
hub
- name: localhub-conf

(continues on next page)

86 Chapter 12. How to write a javascript for Node runtime

BAETYL Documentation

(continued from previous page)

path: var/db/baetyl/localhub-conf
- name: localhub-data
path: var/db/baetyl/localhub-data

- name: localhub-log
path: var/db/baetyl/localhub-log

function manager
- name: function-manager-conf
path: var/db/baetyl/function-manager-conf

- name: function-manager-log
path: var/db/baetyl/function-manager-log

function node runtime sayhi
- name: function-sayjs-conf
path: var/db/baetyl/function-sayjs-conf

- name: function-sayjs-code
path: var/db/baetyl/function-sayjs-code

Baetyl officially provides the Node runtime to load javascripts written by users. The following description is about the
name of a javascript, the execution function name, input, output parameters, and so on.

12.1 Function Name Convention

The name of a javascript can refer to universal naming convention, which Baetyl does not specifically limit. If you
want to apply a javascript to handle an MQTT message, the configuration of Node runtime service is as follows:

functions:
- name: 'sayhi'
handler: 'index.handler'
codedir: 'var/db/baetyl/function-sayhi'

Here, we focus on the handler attribute, where index represents the script name and the handler represents the
entry function called in the file.

function-sayjs-code/
index.js

More detailed configuration of Node runtime, please refer to Node runtime configuration.

12.2 Parameter Convention

exports.handler = (event, context, callback) => {
callback(null, event);

};

The Node runtime provided by Baetyl supports two parameters: event and context, which are described separately
below.

• eventDepend on the Payload in the MQTT message

– If the original Payload is a json format data, then pass in the data handled by json.
loads(Payload)

– If the original Payload is Byte, string(not Json), then pass in the original Payload

• contextMQTT message context

12.1. Function Name Convention 87

BAETYL Documentation

– context.messageQOS // MQTT QoS

– context.messageTopic // MQTT Topic

– context.functionName // MQTT functionName

– context.functionInvokeID //MQTT function invokeID

– context.invokeid // as above, be used to compatible with CFC

NOTE: When testing in the cloud CFC, please don’t use the context defined by Baetyl directly. The recommended
method is to first determine whether the field is exists or not in the context. If exists, read it.

12.3 Hello World

Now we will implement a simple javascript with the goal of appending a hello world message to each MQTT
message. For a dictionary format message, return it directly, and for an none dictionary format message, convert it to
string and return.

#!/usr/bin/env node

exports.handler = (event, context, callback) => {
result = {};

if (Buffer.isBuffer(event)) {
const message = event.toString();
result["msg"] = message;
result["type"] = 'non-dict';

}else {
result["msg"] = event;
result["type"] = 'dict';

}

result["say"] = 'hello world';
callback(null, result);

};

Publish a dict format message:

88 Chapter 12. How to write a javascript for Node runtime

https://cloud.baidu.com/product/cfc.html

BAETYL Documentation

Publish an non-dict format message:

12.3. Hello World 89

BAETYL Documentation

As above, for some general needs, we can implement it through the Node Standard Library. However, for some more
complex demands, it is often necessary to import third-party libraries to complete. How to solve the problem? We’ve
provided a general solution in How to import third-party libraries for Node runtime.

90 Chapter 12. How to write a javascript for Node runtime

CHAPTER 13

How to import third-party libraries for Python runtime

Statement

• The operating system as mentioned in this document is Ubuntu16.04.

• The version of runtime is Python3.6, and for Python2.7, configurations are the same except for the language
differences when coding the scripts.

• The MQTT client toolkit as mentioned in this document is MQTTBox.

• In this document, the third-party libraries we’ll import are requests and Pytorch.

• In this article, the service created based on the Hub module is called localhub service. And for the test
case mentioned here, the localhub service, function calculation service, and other services are configured as
follows:

The configuration of localhub service
Configuration file location is: var/db/baetyl/localhub-conf/service.yml
listen:

- tcp://0.0.0.0:1883
principals:

- username: 'test'
password: 'hahaha'
permissions:

- action: 'pub'
permit: ['#']

- action: 'sub'
permit: ['#']

The configuration of Local Function Manager service
Configuration file location is: var/db/baetyl/function-manager-conf/service.yml
hub:

address: tcp://localhub:1883
username: test
password: hahaha

rules:
- clientid: localfunc-1

(continues on next page)

91

../Resources.html#mqttbox-download
https://pypi.org/project/requests
https://pytorch.org/

BAETYL Documentation

(continued from previous page)

subscribe:
topic: py

function:
name: sayhi3

publish:
topic: py/hi

functions:
- name: sayhi3
service: function-sayhi3
instance:

min: 0
max: 10
idletime: 1m

The configuration of application.yml
Configuration file location is: var/db/baetyl/application.yml
version: v0
services:

- name: localhub
image: hub.baidubce.com/baetyl/baetyl-hub
replica: 1
ports:

- 1883:1883
mounts:

- name: localhub-conf
path: etc/baetyl
readonly: true

- name: localhub-data
path: var/db/baetyl/data

- name: localhub-log
path: var/log/baetyl

- name: function-manager
image: hub.baidubce.com/baetyl/baetyl-function-manager
replica: 1
mounts:

- name: function-manager-conf
path: etc/baetyl
readonly: true

- name: function-manager-log
path: var/log/baetyl

- name: function-sayhi3
image: hub.baidubce.com/baetyl/baetyl-function-python36
replica: 0
mounts:

- name: function-sayhi-conf
path: etc/baetyl
readonly: true

- name: function-sayhi-code
path: var/db/baetyl/function-sayhi
readonly: true

volumes:
hub
- name: localhub-conf
path: var/db/baetyl/localhub-conf

- name: localhub-data
path: var/db/baetyl/localhub-data

- name: localhub-log
(continues on next page)

92 Chapter 13. How to import third-party libraries for Python runtime

BAETYL Documentation

(continued from previous page)

path: var/db/baetyl/localhub-log
function manager
- name: function-manager-conf
path: var/db/baetyl/function-manager-conf

- name: function-manager-log
path: var/db/baetyl/function-manager-log

function python runtime sayhi
- name: function-sayhi-conf
path: var/db/baetyl/function-sayhi-conf

- name: function-sayhi-code
path: var/db/baetyl/function-sayhi-code

Generally, using the Python Standard Library may not meet our needs. In fact, it is often necessary to import some
third-party libraries. Two examples are given below.

13.1 Import requests third-party libraries

Suppose we want to crawl a website and get the response. Here, we can import a third-party library requests. How
to import it, as shown below:

• Step 1: change path to the directory of Python scripts, then download requests package and its dependency
packages(idnaurllib3chardetcertifi)

cd /directory/of/Python/script
pip download requests

• Step 2: inflate the downloaded .whl files for getting the source packages, then remove useless .whl files and
package-description files

unzip *.whl
rm -rf *.whl *.dist-info

• Step 3: make the current directory be a package

touch __init__.py

• Step 4: import the third-party library requests in the Python script as shown below:

import requests

• Step 5: execute your Python script

python your_script.py

If the above operations are normal, the resulting script directory structure is as shown in the following figure.

13.1. Import requests third-party libraries 93

https://pypi.org/project/requests

BAETYL Documentation

the
directory of the Python script

Now we write the Python script get.py to get the headers information of https://baidu.com, assuming the trigger
condition is that Python3.6 runtime receives the “A” command from the localhub service. More detailed contents
are as follows:

#!/usr/bin/env python3
-*- coding: utf-8 -*-

import requests

def handler(event, context):
"""
data: {"action": "A"}
"""
if 'action' in event:

if event['action'] == 'A':
r = requests.get('https://baidu.com')
if str(r.status_code) == '200':

event['info'] = dict(r.headers)
else:

event['info'] = 'exception found'
else:

event['info'] = 'action error'
else:

event['error'] = 'action not found'

return event

The configuration of Python function runtime is as below:

The configuration of Python function runtime
functions:
- name: 'sayhi3'
handler: 'get.handler'
codedir: 'var/db/baetyl/function-sayhi'

As above, after receiving the message publish to the topic py, the localhub service will call the get.py script to
handle, and following it publish the result to the topic py/hi. So in the test case, we use MQTTBox to subscribe the
topic py/hi and publish the message {"action": "A"} to the localhub service by the topic py. If everything
works correctly, MQTTBox can receive the message of the topic py/hi which contains the headers information of
https://baidu.com as shown below.

94 Chapter 13. How to import third-party libraries for Python runtime

https://baidu.com
https://baidu.com

BAETYL Documentation

Get
the header information of https://baetyl.io

13.2 Import Pytorch third-party libraries

Pytorch is a widely used deep learning framework for machine learning. We can import a third-party library
Pytorch to use its functions. How to import it, as shown below:

• Step 1: change path to the directory of Python scripts, then download Pytorch package and its dependency
packages(PILcaffee2numpysixtorchvision)

cd /directory/of/Python/script
pip3 download torch torchvision

• Step 2: inflate the downloaded .whl files for getting the source packages, then remove useless .whl files and
package-description files

unzip *.whl
rm -rf *.whl *.dist-info

• Step 3: make the current directory be a package

touch __init__.py

• Step 4: import the third-party library Pytorch in the Python script as shown below:

13.2. Import Pytorch third-party libraries 95

https://pytorch.org/

BAETYL Documentation

import torch

• Step 5: execute your Python script

python your_script.py

If the above operations are normal, the resulting script directory structure is as shown in the following figure.

the
directory of the Python script

Now we write the Python script calc.py to use functions provided by Pytorch for generating a random tensor,
assuming the trigger condition is that Python3.6 runtime receives the “B” command from the localhub service.
More detailed contents are as follows:

#!/usr/bin/env python3
-*- coding: utf-8 -*-

import torch

def handler(event, context):
"""
data: {"action": "B"}
"""
if 'action' in event:
if event['action'] == 'B':

x = torch.rand(5, 3)
event['info'] = x.tolist()

else:
event['info'] = 'exception found'

else:
event['error'] = 'action not found'

return event

The configuration of Python function runtime is as below:

The configuration of Python function runtime
functions:
- name: 'sayhi3'

(continues on next page)

96 Chapter 13. How to import third-party libraries for Python runtime

BAETYL Documentation

(continued from previous page)

handler: 'calc.handler'
codedir: 'var/db/baetyl/function-sayhi'

As above, after receiving the message publish to the topic py, the localhub service will call the calc.py script
to handle, and following it publish the result to the topic py/hi. So in the test case, we use MQTTBox to subscribe
the topic py/hi and publish the message {"action": "B"} to the localhub service by the topic py. If
everything works correctly, MQTTBox can receive the message of the topic py/hi in which we can get a random
tensor as shown below.

generate
a random tensor

13.2. Import Pytorch third-party libraries 97

BAETYL Documentation

98 Chapter 13. How to import third-party libraries for Python runtime

CHAPTER 14

How to import third-party libraries for Node runtime

Statement

• The operating system as mentioned in this document is Ubuntu16.04.

• The version of runtime is Node8.5

• The MQTT client toolkit as mentioned in this document is MQTTBox.

• In this document, we give an example about how import the third-party library Lodash.

• In this article, the service created based on the Hub module is called localhub service. And for the test
case mentioned here, the localhub service, function calculation service, and other services are configured as
follows:

The configuration of Local Hub service
Configuration file location is: var/db/baetyl/localhub-conf/service.yml
listen:

- tcp://0.0.0.0:1883
principals:

- username: 'test'
password: 'hahaha'
permissions:

- action: 'pub'
permit: ['#']

- action: 'sub'
permit: ['#']

The configuration of Local Function Manager service
Configuration file location is: var/db/baetyl/function-manager-conf/service.yml
hub:

address: tcp://localhub:1883
username: test
password: hahaha

rules:
- clientid: localfunc-1
subscribe:

(continues on next page)

99

../Resources.html#mqttbox-download
https://www.lodashjs.com/

BAETYL Documentation

(continued from previous page)

topic: node
function:

name: sayhi
publish:
topic: t/hi

functions:
- name: sayhi
service: function-sayhi
instance:

min: 0
max: 10
idletime: 1m

The configuration of application.yml
Configuration file location is: var/db/baetyl/application.yml
version: v0
services:

- name: localhub
image: hub.baidubce.com/baetyl/baetyl-hub
replica: 1
ports:

- 1883:1883
mounts:

- name: localhub-conf
path: etc/baetyl
readonly: true

- name: localhub-data
path: var/db/baetyl/data

- name: localhub-log
path: var/log/baetyl

- name: function-manager
image: hub.baidubce.com/baetyl/baetyl-function-manager
replica: 1
mounts:

- name: function-manager-conf
path: etc/baetyl
readonly: true

- name: function-manager-log
path: var/log/baetyl

- name: function-sayhi
image: hub.baidubce.com/baetyl/baetyl-function-node85
replica: 0
mounts:

- name: function-sayjs-conf
path: etc/baetyl
readonly: true

- name: function-sayjs-code
path: var/db/baetyl/function-sayhi
readonly: true

volumes:
hub
- name: localhub-conf
path: var/db/baetyl/localhub-conf

- name: localhub-data
path: var/db/baetyl/localhub-data

- name: localhub-log
path: var/db/baetyl/localhub-log

(continues on next page)

100 Chapter 14. How to import third-party libraries for Node runtime

BAETYL Documentation

(continued from previous page)

function manager
- name: function-manager-conf
path: var/db/baetyl/function-manager-conf

- name: function-manager-log
path: var/db/baetyl/function-manager-log

function node runtime sayhi
- name: function-sayjs-conf
path: var/db/baetyl/function-sayjs-conf

- name: function-sayjs-code
path: var/db/baetyl/function-sayjs-code

Generally, using the Node Standard Library may not meet our needs. In fact, it is often necessary to import some
third-party libraries. We’ll give one example below.

14.1 Import Lodash third-party libraries

Lodash is a modern JavaScript utility library delivering modularity, performance & extras. Baetyl support import
third-party libraries such as Lodash to use its functions. How to import it, as shown below:

• Step 1: change path to the directory of javascripts, then install Lodash package

cd /directory/of/Node/script
npm install --save lodash

• Step 2: import Lodash in a javascript:

const _ = require('lodash');

• Step 3: execute your javascript:

node your_script.js

If the above operations are normal, the resulting script directory structure is as shown in the following figure.

the
directory of Lodash

Now we write the script index.js to use functions provided by Lodash. More detailed contents are as follows:

#!/usr/bin/env node

const _ = require('lodash');

exports.handler = (event, context, callback) => {
result = {}

(continues on next page)

14.1. Import Lodash third-party libraries 101

https://www.lodashjs.com/

BAETYL Documentation

(continued from previous page)

//remove repeating elements in array
result["unique_array"] = _.uniq(event['array']);
//sort
result['sorted_users'] = _.sortBy(event['users'], function(o) { return o.age; });
//filter
result['filtered_users'] = _.filter(event['users'], function(o) { return !o.active;

→˓});

callback(null, result);
}

The configuration of Node function runtime is as below:

The configuration of Node function runtime
functions:
- name: 'sayhi'
handler: 'index.handler'
codedir: 'var/db/baetyl/function-sayhi'

First define the following json data as an input message:

{
"array": ["Jane", 1, "Jane", 1, 2],
"users": [

{ "user": "barney", "age": 36, "active": true },
{ "user": "fred", "age": 40, "active": false },
{ "user": "Jane", "age": 32, "active": true }

]
}

As above, after the localhub service receives the message sent to the topic node, it calls index.js script to
execute the concrete logic to remove repeated elements, filter, sort of array in input data. The result is then fed back
to the topic t/hi as an MQTT message. We subscribe to the topic t/hi via MQTTBox and we can observe the
following message:

{
"unique_array": ["Jane", 1, 2],
"sorted_users": [

{ "user": "Jane", "age": 32, "active": true },
{ 'user': 'barney', "age": 36, "active": true },
{ "user": "fred", "age": 40, "active": false }

],
"filtered_users": [

{ "user": "fred", "age": 40, "active": false }
],

}

102 Chapter 14. How to import third-party libraries for Node runtime

BAETYL Documentation

using_lodash

14.1. Import Lodash third-party libraries 103

BAETYL Documentation

104 Chapter 14. How to import third-party libraries for Node runtime

CHAPTER 15

Customize Runtime Module

The function runtime is the carrier of the function execution. The function is executed by dynamically loading the
function code, which is strongly related to the language of the function implementation. For example, Python code
needs to be called using the Python runtime. This is a multi-language issue. In order to unify the interface and protocol,
we finally chose GRPC to create a flexible functional computing framework with its powerful cross-language IDL and
high-performance RPC communication capabilities.

In the function compute service (FaaS), baetyl-function-manager is responsible for the management and
invocation of function instances. The function instance is provided by the function runtime service, and the function
runtime service only needs to meet the conventions described below.

15.1 Protocol Convention

Developers can use the function.proto in sdk/baetyl-go to generate messages and service implementa-
tions for their respective programming languages, as defined below. For the usage of GRPC, refer to GRPC Official
Documents.

syntax = "proto3";

package baetyl;

// The function server definition.
service Function {

rpc Call(FunctionMessage) returns (FunctionMessage) {}
// rpc Talk(stream Message) returns (stream Message) {}

}

// FunctionMessage function message
message FunctionMessage {

uint64 ID = 1;
uint32 QOS = 2;
string Topic = 3;
bytes Payload = 4;

(continues on next page)

105

https://grpc.io/docs/quickstart/go.html
https://grpc.io/docs/quickstart/go.html

BAETYL Documentation

(continued from previous page)

string FunctionName = 11;
string FunctionInvokeID = 12;

}

NOTE: In docker container mode, the resource limit of the function instance should not be lower than 50M memory
and 20 threads.

15.2 Configuration Convention

The function runtime module does not enforce the configuration. However, for the unified configuration mode, the
following configuration items are recommended.

• name: function name

• handler: function processing interface

• codedir: The path to the function code, if any.

The following is a configuration example of a Python function runtime service:

functions:
- name: 'sayhi'
handler: 'sayhi.handler'
codedir: 'var/db/baetyl/function-sayhi'

15.3 Start/Stop Convention

The function runtime service is the same as other services, the only difference is that the instance is dynami-
cally started by other services. For example, to avoid listening port conflicts, you can specify the port dynam-
ically. The function runtime module can read BAETYL_SERVICE_INSTANCE_ADDRESS from the environ-
ment variable as the address that the GRPC Server listens on. In addition, dynamically launched function in-
stances do not have permission to call the main program’s API. Finally, the module listens for the SIGTERM
signal to gracefully exit. A complete implementation can be found in the Python2.7Python3.6 runtime module
(baetyl-function-python27baetyl-function-python36).

106 Chapter 15. Customize Runtime Module

CHAPTER 16

Customize Module

Read Build Baetyl From Source before developing custom modules to understand Baetyl’s build environment require-
ments.

Custom modules do not limit the development language. Understand these conventions below to integrate custom
modules better and faster.

The custom module does not limit the development language. As long as it is a runnable program, you can even use
the image already on hub.docker.com, such as eclipse-mosquitto. But understanding the conventions described
below will help you develop custom modules better and faster.

16.1 Directory Convention

At present, the native process mode, like the docker container mode, opens up a separate workspace for each service.
Although it does not achieve the effect of isolation, it can guarantee the consistency of the user experience. The
process mode creates a separate directory for each service in the var/run/baetyl/services directory, using
service name. When the server starts, it specifies the directory as the working directory, and the service-bound storage
volumes will be mapped (soft link) to the working directory. Here we keep the definition of the docker container mode,
the workspace under the directory is also called the container, then the directory in the container has the following
recommended usage:

• Default working directory in the container: /

• Default configuration file in the container: /etc/baetyl/service.yml

• Default persistence path in the container: /var/db/baetyl

• Default log directory in the container: /var/log/baetyl

NOTE: If the data needs to be persisted on the device (host), such as database and log, the directory in the container
must be mapped to the host directory through the storage volume, otherwise the data will be lost after the service is
stopped.

107

BAETYL Documentation

16.2 Start/Stop Convention

There is no excessive requirement for the module to be started. But it is recommended to load the YMAL format
configuration from the default file, then run the module’s business logic, and finally listen to the SIGTERM signal to
gracefully exit. A simple Golang module implementation can refer to the MQTT remote communication module
(baetyl-remote-mqtt).

16.3 SDK

If the module is developed using Golang, you can use the SDK provided by Baetyl, located in the sdk directory of
the project, and the functional interfaces are provided by Context. At present, the SDK capabilities provided are
still not enough, and the follow-up will be gradually strengthened.

The list of Context interfaces are as follows:

// returns the system configuration of the service, such as hub and logger
Config() *ServiceConfig
// loads the custom configuration of the service
LoadConfig(interface{}) error
// creates a Client that connects to the Hub through system configuration,
// you can specify the Client ID and the topic information of the subscription.
NewHubClient(string, []mqtt.TopicInfo) (*mqtt.Dispatcher, error)
// returns logger interface
Log() logger.Logger
// check running mode
IsNative() bool
// waiting to exit, receiving SIGTERM and SIGINT signals
Wait()
// returns wait channel
WaitChan() <-chan os.Signal

// Master RESTful API

// updates system and
UpdateSystem(string, bool) error
// inspects system stats
InspectSystem() (*Inspect, error)
// gets an available port of the host
GetAvailablePort() (string, error)
// reports the stats of the instance of the service
ReportInstance(stats map[string]interface{}) error
// starts an instance of the service
StartInstance(serviceName, instanceName string, dynamicConfig map[string]string) error
// stop the instance of the service
StopInstance(serviceName, instanceName string) error

The following uses the simple timer module implementation as an example to introduce the usage of the SDK.

package main

import (
"encoding/json"
"time"

"github.com/baetyl/baetyl/protocol/mqtt"

(continues on next page)

108 Chapter 16. Customize Module

BAETYL Documentation

(continued from previous page)

baetyl "github.com/baetyl/baetyl/sdk/baetyl-go"
)

// custom configuration of the timer module
type config struct {

Timer struct {
Interval time.Duration `yaml:"interval" json:"interval" default:"1m"`

} `yaml:"timer" json:"timer"`
Publish mqtt.TopicInfo `yaml:"publish" json:"publish" default:"{\"topic\":\

→˓"timer\"}"`
}

func main() {
// Running module in baetyl context
baetyl.Run(func(ctx baetyl.Context) error {

var cfg config
// load custom config
err := ctx.LoadConfig(&cfg)
if err != nil {

return err
}
// create a hub client
cli, err := ctx.NewHubClient("", nil)
if err != nil {

return err
}
// start client to keep connection with hub
cli.Start(nil)
// create a timer
ticker := time.NewTicker(cfg.Timer.Interval)
defer ticker.Stop()
for {

select {
case t := <-ticker.C:

msg := map[string]int64{"time": t.Unix()}
pld, _ := json.Marshal(msg)
// send a message to hub triggered by timer
err := cli.Publish(cfg.Publish, pld)
if err != nil {

// log error message
ctx.Log().Errorf(err.Error())

}
case <-ctx.WaitChan():

// wait until service is stopped
return nil

}
}

})
}

16.3. SDK 109

BAETYL Documentation

110 Chapter 16. Customize Module

CHAPTER 17

FAQ

This document mainly provides related issues and solutions for Baetyl deployment and startup in various platforms.

Q1: Prompt missing startup dependency configuration item when starting Baetyl in docker container mode.

Picture

Suggested Solution: As shown in the above picture, Baetyl startup lacks configuration dependency files, refer to
GitHub-Baetyl example folder(the location is etc/baetyl/conf.yml).

Q2: Execute the command docker info get the following result on Ubuntu/Debian: “WARNING: No swap
limit support”

Suggested Solution:

1. Open /etc/default/grub with your favorite text editor. Make sure the following lines are commented out
or add them if they don’t exist:

GRUB_CMDLINE_LINUX=”cgroup_enable=memory swapaccount=1”

1. Save and exit and then run: sudo update-grub and reboot.

NOTE: If you got some error when you execute step2, it may be that the grub setting is incorrect. Please repeat
steps 1 and 2.

Q3: Found “WARNING: Your kernel does not support swap limit capabilities. Limitation discarded” when
Baetyl start.

Suggested Solution: Refer to Q2.

Q4: Found “Got permission denied while trying to connect to the docker daemon socket at
unix:///var/run/docker.sock: Get http://%2Fvar%2Frun%2Fdocker.sock/v1.38/images/json: dial unix
/var/run/docker.sock: connect: permission denied” when Baetyl start.

Suggested Solution: Add the docker group if it doesn’t already exist:

sudo groupadd docker

111

https://github.com/baetyl/baetyl

BAETYL Documentation

Add the current user to the docker group:

sudo usermod -aG docker ${USER}
su - ${USER}

Q5: Found “Cannot connect to the docker daemon at unix:///var/run/docker.sock. Is the docker daemon run-
ning?” when Baetyl start.

Suggested Solution: If you still report this issue after the solution of Q4 solution is executed, restart the docker
service.

For example, execute the following command on CentOS:

systemctl start docker

Q6: Found “failed to create master: Error response from daemon: client version 1.39 is too new. Maximum
supported API version is 1.38” when Baetyl start.

Suggested Solution: Workaround is to pass API version via environment variable:

DOCKER_API_VERSION=1.38

For example:

sudo vim ~/.bash_profile
export DOCKER_API_VERSION=1.38
source ~/.bash_profile

Q7: How does Baetyl connect to NB-IOT network?

Suggested Solution: NB-IoT is a network standard similar to 2/3/4G with low bandwidth and low power consumption.
NB-IoT supports TCP-based MQTT protocol, so you can use NB-IoT card to connect to Baidu Cloud IotHub, deploy
Baetyl application and communicate with BIE Cloud Management Suite. However, among the three major operators
in China, Telecom have imposed whitelist restrictions on their NB cards, and only allow to connect to Telecom Cloud
service IP. Therefore, only Mobile NB cards and Unicom NB cards can be used to connect to Baidu Cloud service.

Q8: Does Baetyl support to push data to Kafka?

Suggested Solution: Support, you can refer to How to write a python script for python runtime, and subscribe mes-
sages from the local Hub module and writing them to Kafka service. Besides, you can also refer to How to develop a
customize module for Baetyl, which subscribes message from the local Hub module and then writes it to Kafka.

Q9: What are the ways to change Baetyl configurations? Can I only make configuration changes through the
BIE Cloud Management Suite?

Suggested Solution: Currently, we recommend changing configurations through the BIE Cloud Management Suite,
but you can also manually change the configuration file on the core device and then restart Baetyl to take effect.

Q10I download MQTTBox client, extract it to a directory, and copy/move the executable file MQTTBox to /
usr/local/bin(other directory is similar, such as /usr/bin, /bin, /usr/sbin, etc.). But it reports an
error of “error while loading shared libraries: libgconf-2.so.4: cannot open shared object file: No such file or
directorywhenMQTTBox” start.

Suggested SolutionAs above description, this is because the lack of libgconf-2.so.4 library when MQTTBox
start, and the recommended use is as follows:

• Step 1: Download and extract the MQTTBox software package;

• Step 2: cd /pat/to/MQTTBox/directory and sudo chmod +x MQTTBox;

• Step 3sudo ln -s /path/to/MQTTBox /usr/local/bin/MQTTBox;

• Step 4Open terminal and execute the command MQTTBox.

112 Chapter 17. FAQ

https://cloud.baidu.com/product/bie.html
https://cloud.baidu.com/product/bie.html

BAETYL Documentation

Q11: localfunc can’t process the message, check funclog has the following error message:

level=error msg=”failed to create new client” dispatcher=mqtt error=”dial tcp 0.0.0.0:1883:con-
nect:connection refused”

Suggested Solution: If you are using the BIE Cloud Management Suite to deliver the configuration, there are a few
points to note:

1. Cloud delivery configuration currently only supports container mode.

2. If the configuration is sent in the cloud, the hub address configured in localfunc should be localhub
instead of 0.0.0.0.

According to the above information, the actual error is judged, and the configuration is delivered from the cloud as
needed, or by referring to Configuration Analysis Document for verification and configuration.

Q12 How can i use BIE Cloud Management Suite with CFC(Cloud Function Compute)?

Suggested Solution:

1. Make sure your BIE configuration and CFC functions in the same region, such as beijing/guangzhou.

2. Make sure your CFC functions are published.

3. Select CFC function template when volume create, more detailed contents please refer to How-to-
apply-volume-in-the-right-way

Q13 What‘s the relationship between the parameter ports and the parameter listen which in the hub configu-
ration file?

Suggested Solution:

1. ports: Port exposed configuration in docker container mode.

2. listen: Which address the hub module will listen on. In docker container mode, it’s means container address. In
native process mode, it’s means host address.

3. By referring to Configuration Analysis Document

Q14: How to process data in the cloud platform after message send to Baidu IoT Hub by Baetyl?

Suggested Solution: In the cloud platform, the Rule Engine can be used to transmit data to other cloud services, such
as CFC(Cloud Function Compute), TSDB.

Q15: How to connect the Device management of Baidu IoT Hub?

Suggested Solution: The Device management of Baidu IoT Hub does not support ssl authentication. As a tempo-
rary solution, you can configure Remote Feature to connect the Device management with username and password
authentication manually.

Q16If I don’t want to lose messages and want to ensure all messages are synchronized to cloud, how can I do?

Suggested Solution:

You must meet the following 2 conditions:

• To make sure messages will be persist in local disk which are sent to local hub, the topic’s QoS must be set to 1.

• To make sure messages will be sent to cloud successful, the QoS of rules configuration of Remote module
must be set to 1, which includes remote sub’s QoS and the pub’s QoS. By referring to Configuration Analysis
Document

Q17: After the configuration is sent from the cloud to the edge, the default startup
mode is docker container mode. After modifying mode: native in etc/baetyl/
conf.yml the startup error is similar to the following: “failed to update system: open

113

https://cloud.baidu.com/product/cfc.html
https://cloud.baidu.com/doc/BIE/s/Cjzdn8xig
https://cloud.baidu.com/doc/BIE/s/Cjzdn8xig
https://cloud.baidu.com/product/iot.html
https://cloud.baidu.com/product/re.html
https://cloud.baidu.com/product/cfc.html
https://cloud.baidu.com/product/tsdb.html
https://cloud.baidu.com/doc/IOT/GettingStarted.html#.E5.88.9B.E5.BB.BA.E7.89.A9.E6.A8.A1.E5.9E.8B

BAETYL Documentation

/Users/ Xxx/baetyl_native/var/run/baetyl/services/agent/lib/baetyl/hub.baidubce.com/baetyl/baetyl-
agent:latest/package.yml: no such file or directory”.

Suggested Solution: At present, our cloud management does not support the process mode. If you need to start
Baetyl in process mode locally, please refer to the configuration content in example/native and execute the
command make install-native. Install and start by process with the command sudo baetyl start.

Q18: There is a similar error when downloading the image: “error=”Error response from daemon: Get
https://hub.baidubce.com/v2/: x509: failed to load system roots and no roots provided” baetyl= Master”.

Suggested Solution: This is because the ca-certificates package is missing from the system and can be in-
stalled to solve this problem. For example, if the host system is Debian, you can use the following command to install
it:

sudo apt-get update
sudo apt-get install ca-certificates

For other systems, please check the relevant installation operations yourself.

114 Chapter 17. FAQ

CHAPTER 18

Download

18.1 Golang download

Official websitehttps://golang.org/dl/

Golang download link of BOS(Baidu-Object-Storage)

18.2 MQTT download

18.2.1 MQTT client sample

C sample of MQTT clientC-sample-of-MQTT-client

Python sample of MQTT clientPython-sample-of-MQTT-client

18.2.2 MQTT.fx download

Official websitehttp://www.jensd.de/apps/mqttfx/1.7.1/

MQTT.fx download link of BOS

18.2.3 MQTTBox download

Official websitehttp://workswithweb.com/html/mqttbox/downloads.html

MQTTBox download link of BOS

115

https://golang.org/dl/
https://cloud.baidu.com/product/bos.html
https://baetyl.cdn.bcebos.com/mqtt-example/MQTT-c-example.tar.gz
https://baetyl.cdn.bcebos.com/mqtt-example/MQTT-python-example.tar.gz
http://www.jensd.de/apps/mqttfx/1.7.1/
http://workswithweb.com/html/mqttbox/downloads.html

BAETYL Documentation

18.2.4 Paho MQTT Client SDK

Official website: http://www.eclipse.org/paho

Paho MQTT Client Comparison

116 Chapter 18. Download

http://www.eclipse.org/paho

	What is Baetyl
	Advantages
	Components
	Installation
	Development
	Contributing
	Contact us

	Baetyl Design
	Concepts
	Components
	Master
	Official Modules

	Contributing
	Workflow
	Code Review
	Merge Rule

	Quick Install Baetyl
	Install the container runtime
	Install Baetyl
	Import the example configuration (optional)
	Start Baetyl
	Verify successful installation

	Build Baetyl From Source
	Environment Configuration
	Source Code Compilation

	Baetyl Configuration Interpretation
	Master Configuration
	Application Configuration
	baetyl-agent Configuration
	baetyl-hub Configuration
	baetyl-function-manager Configuration
	baetyl-function-python Configuration
	baetyl-remote-mqtt Configuration
	baetyl-timer Configuration

	Device connect to Baetyl with Hub service
	Workflow
	Connection Test

	Message transferring among devices with Local Hub Service
	Workflow
	Message Routing Test

	Message handling with Local Function Service
	Workflow
	Message Handling Test

	Message Synchronize between Baetyl-Hub and Baidu IoTHub via Baetyl-Remote-MQTT module
	Workflow
	Message Synchronize via Baetyl-Remote-MQTT module

	How to write a python script for Python runtime
	Function Name Convention
	Parameter Convention
	Hello World

	How to write a javascript for Node runtime
	Function Name Convention
	Parameter Convention
	Hello World

	How to import third-party libraries for Python runtime
	Import requests third-party libraries
	Import Pytorch third-party libraries

	How to import third-party libraries for Node runtime
	Import Lodash third-party libraries

	Customize Runtime Module
	Protocol Convention
	Configuration Convention
	Start/Stop Convention

	Customize Module
	Directory Convention
	Start/Stop Convention
	SDK

	FAQ
	Download
	Golang download
	MQTT download

