

Welcome to BAETYL’s documentation!

[image: _images/logo-with-name.png]
 [https://baetyl.io/en/]

Baetyl, extend cloud computing, data and service seamlessly to edge devices.

	BAETYL Home [https://baetyl.io/en/]

Overview

	What is Baetyl
	Advantages

	Components

	Installation

	Development

	Contributing

	Contact us

	Baetyl Design
	Concepts

	Components

	Master

	Official Modules

	Contributing
	Workflow

	Code Review

	Merge Rule

Installation

	Quick Install Baetyl
	Install the container runtime

	Install Baetyl

	Import the example configuration (optional)

	Start Baetyl

	Verify successful installation

	Build Baetyl From Source
	Environment Configuration

	Source Code Compilation

Guides

	Baetyl Configuration Interpretation
	Master Configuration

	Application Configuration

	baetyl-agent Configuration

	baetyl-hub Configuration

	baetyl-function-manager Configuration

	baetyl-function-python Configuration

	baetyl-remote-mqtt Configuration

	baetyl-timer Configuration

	Device connect to Baetyl with Hub service
	Workflow

	Connection Test

	Message transferring among devices with Local Hub Service
	Workflow

	Message Routing Test

	Message handling with Local Function Service
	Workflow

	Message Handling Test

	Message Synchronize between Baetyl-Hub and Baidu IoTHub via Baetyl-Remote-MQTT module
	Workflow

	Message Synchronize via Baetyl-Remote-MQTT module

Development

	How to write a python script for Python runtime
	Function Name Convention

	Parameter Convention

	Hello World

	How to write a javascript for Node runtime
	Function Name Convention

	Parameter Convention

	Hello World

	How to import third-party libraries for Python runtime
	Import requests third-party libraries

	Import Pytorch third-party libraries

	How to import third-party libraries for Node runtime
	Import Lodash third-party libraries

	Customize Runtime Module
	Protocol Convention

	Configuration Convention

	Start/Stop Convention

	Customize Module
	Directory Convention

	Start/Stop Convention

	SDK

Troubleshooting

	FAQ

Resources

	Download
	Golang download

	MQTT download

What is Baetyl

Baetyl [https://baetyl.io] is an open edge computing framework of Linux Foundation Edge [https://www.lfedge.org] that extends cloud computing, data and service seamlessly to edge devices. It can provide temporary offline, low-latency computing services, and include device connect, message routing, remote synchronization, function computing, video access pre-processing, AI inference, device resources report etc. The combination of Baetyl and the Cloud Management Suite of BIE [https://cloud.baidu.com/product/bie.html](Baidu IntelliEdge) will achieve cloud management and application distribution, enable applications running on edge devices and meet all kinds of edge computing scenario.

About architecture design, Baetyl takes modularization and containerization design mode. Based on the modular design pattern, Baetyl splits the product to multiple modules, and make sure each one of them is a separate, independent module. In general, Baetyl can fully meet the conscientious needs of users to deploy on demand. Besides, Baetyl also takes containerization design mode to build images. Due to the cross-platform characteristics of docker to ensure the running environment of each operating system is consistent. In addition, Baetyl also isolates and limits the resources of containers, and allocates the CPU, memory and other resources of each running instance accurately to improve the efficiency of resource utilization.

Advantages

	Shielding Computing Framework: Baetyl provides two official computing modules(Local Function Module and Python Runtime Module), also supports customize module(which can be written in any programming language or any machine learning framework).

	Simplify Application Production: Baetyl combines with Cloud Management Suite of BIE and many other productions of Baidu Cloud(such as CFC [https://cloud.baidu.com/product/cfc.html], Infinite [https://cloud.baidu.com/product/infinite.html], EasyEdge [https://ai.baidu.com/easyedge/home], TSDB [https://cloud.baidu.com/product/tsdb.html], IoT Visualization [https://cloud.baidu.com/product/iotviz.html]) to provide data calculation, storage, visible display, model training and many more abilities.

	Service Deployment on Demand: Baetyl adopts containerization and modularization design, and each module runs independently and isolated. Developers can choose modules to deploy based on their own needs.

	Support multiple platforms: Baetyl supports multiple hardware and software platforms, such as X86 and ARM CPU, Linux and Darwin operating systems.

Components

As an edge computing platform, Baetyl not only provides features such as underlying service management, but also provides some basic functional modules, as follows:

	Baetyl Master is responsible for the management of service instances, such as start, stop, supervise, etc., consisting of Engine, API, Command Line. And supports two modes of running service: native process mode and docker container mode

	The official module baetyl-agent is responsible for communication with the BIE cloud management suite, which can be used for application delivery, device information reporting, etc. Mandatory certificate authentication to ensure transmission security;

	The official module baetyl-hub provides message subscription and publishing functions based on the MQTT protocol [http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html], and supports four access methods: TCP, SSL, WS, and WSS;

	The official module baetyl-remote-mqtt is used to bridge two MQTT Servers for message synchronization and supports configuration of multiple message route rules. ;

	The official module baetyl-function-manager provides computing power based on MQTT message mechanism, flexible, high availability, good scalability, and fast response;

	The official module baetyl-function-python27 provides the Python2.7 function runtime, which can be dynamically started by baetyl-function-manager;

	The official module baetyl-function-python36 provides the Python3.6 function runtime, which can be dynamically started by baetyl-function-manager;

	The official module baetyl-function-node85 provides the Node 8.5 function runtime, which can be dynamically started by baetyl-function-manager;

	SDK (Golang) can be used to develop custom modules.

Architecture

[image: ../_images/design_overview.png]Architecture

Installation

	Quick Install Baetyl

	Build Baetyl From Source

Development

	Baetyl design

	Baetyl config interpretation

	How to write Python script for Python runtime

	How to write Node script for Node runtime

	How to import third-party libraries for Python runtime

	How to import third-party libraries for Node runtime

	How to develop a customize runtime for function

	How to develop a customize module for Baetyl

Contributing

If you are passionate about contributing to open source community, Baetyl will provide you with both code contributions and document contributions. More details, please see: How to contribute code or document to Baetyl.

Contact us

As the first open edge computing framework in China, Baetyl aims to create a lightweight, secure, reliable and scalable edge computing community that will create a good ecological environment. In order to create a better development of Baetyl, if you have better advice about Baetyl, please contact us:

	Welcome to join Baetyl’s Wechat [https://baetyl.bj.bcebos.com/Wechat/Wechat-Baetyl.png]

	Welcome to join Baetyl’s LF Edge Community [https://lists.lfedge.org/g/baetyl/topics]

	Welcome to send email to baetyl@lists.lfedge.org

	Welcome to submit an issue [https://github.com/baetyl/baetyl/issues]

Baetyl Design

Concepts

	System: Refers to the Baetyl system, including Master, Service, Volume and system resources used.

	Master: Refers to the core part of the Baetyl, responsible for managing Volume and Service, built-in Engine, external RESTful API and command line.

	Module: Provides an executable package for Service, such as a docker image, to launch instances of Service.

	Service: Refers to a set of running programs that managed by Baetyl to provide specific functions such as message routing services, function computing services, micro-services, etc.

	Instance: Refers to the specific running program or container launched by the Service, a Service can start multiple instances, or can be dynamically started by other services. For example, the instances of function runtime service are dynamically started and stopped by the function manager service.

	Volume: Refers to the directory used by the Service, can be a read-only directory, such as a directory for placing resources such as configuration, certificates, scripts, etc., or a writable directory to persist data, such as logs and database.

	Engine: Refers to the operational abstractions and concrete implementations of the various running modes of the Service, such as the docker container mode and the native process mode.

	Services and System Relationships: Baetyl systems can start multiple services, there is no dependency between services, and their startup order should not be assumed (although it is currently started sequentially). All data generated by the service at runtime is temporary and will be deleted when the service is stopped, unless it is mapped to a persistent directory. The program in the service may stop for various reasons, and the service will restart the program according to the user’s configuration. This situation is not equal to the stop of the service, so the temporary data will not be deleted.

Components

A complete Baetyl system consists of Master, Service, Volume and system resources used. The Master loads all modules according to the application configuration to start the corresponding services, and a service can start several instances, all of which are managed and supervised by Master. NOTE that the instances of the same service shares the storage volume bound to the service. Therefore, if an exclusive resource exists, such as listening to the same port, only one instance can be successfully started.

At present, Baetyl has the following official modules:

	baetyl-agent: Provides cloud agent service for status reporting and application OTA.

	baetyl-hub: Provides an MQTT-based message routing service.

	baetyl-remote-mqtt: Provides a bridge services for synchronizing messages between Hub and remote MQTT services.

	baetyl-function-manager: Provides function services for function instance management and message-triggered function calls.

	baetyl-function-python27: Provides a GRPC micro-service that loads Python scripts based on Python2.7 runtime that can be managed by baetyl-function-manager as a function instance provider.

	baetyl-function-python36: Provides a GRPC micro-service that loads Python scripts based on Python3.6 runtime that can be managed by baetyl-function-manager as a function instance provider.

	baetyl-function-node85: Provides a GRPC micro-service that loads javascripts based on Node8.5 runtime that can be managed by baetyl-function-manager as a function instance provider.

Structure Diagram:

[image: ../_images/design_overview.png]Structure Diagram

Master

Master as the core of the Baetyl system, it manages all storage volumes and services, has a built-in runtime engine system, and provides RESTful APIs and command lines.

The start and stop process of the Master is as follows:

	Execute the startup command: sudo systemctl start baetyl to start Baetyl in Docker mode and then execute the command sudo systemctl status baetyl to check whether baetyl is running. In darwin, excute sudo baetyl start to run the Baetyl in the foreground of the terminal.

	The Master will first load etc/baetyl/conf.yml in the working directory, initialize the running mode, API server, log and exit timeout, etc. These configurations can not be changed during application OTA. If no error is reported, the baetyl.sock (only on Linux) file is generated in the var/run/ directory.

	The Master will then attempt to load the application configuration var/db/baetyl/application.yml and will not start any service if the configuration does not exist, otherwise the list of services and storage volumes in the application configuration will be loaded. This file will be updated during application OTA, and the system will update the services according to the new configuration.

	Before starting all services, the Master will first call the Engine interface to perform some preparatory work. For example, in container mode, it will try to download the image of all services first.

	After the preparation is completed, start all services in sequence, and if the service fails to start, the Master will exit. In the container mode, the storage volumes are mapped to the inside of the container; in the process mode, a temporary working directory is created for each service, and the storage volumes are soft linked to the working directory. If the service is stopped, the temporary working directory will be cleaned up, and the behavior is the same with container mode.

	Finally, you can stop baetyl by ctrl + c, and the Master will notify all service instances to exit and wait. If it times out, it will force the instance to be killed. Then clean up baetyl.sock and exit.

The complete application.yml configuration as follows:

// AppConfig application configuration
type AppConfig struct {
	// specifies the version of the application configuration
	Version string `yaml:"version" json:"version"`
	// specifies the service information of the application
	Services []ServiceInfo `yaml:"services" json:"services" default:"[]"`
	// specifies the storage volume information of the application
	Volumes []VolumeInfo `yaml:"volumes" json:"volumes" default:"[]"`
}

// VolumeInfo storage volume configuration
type VolumeInfo struct {
	// specifies a unique name for the storage volume
	Name string `yaml:"name" json:"name" validate:"regexp=^[a-zA-Z0-9][a-zA-Z0-9_-]{0\\,63}$"`
	// specifies the directory where the storage volume is on the host
	Path string `yaml:"path" json:"path" validate:"nonzero"`
}

// MountInfo storage volume mapping configuration
type MountInfo struct {
	// specifies the name of the mapped storage volume
	Name string `yaml:"name" json:"name" validate:"regexp=^[a-zA-Z0-9][a-zA-Z0-9_-]{0\\,63}$"`
	// specifies the directory where the storage volume is in the container
	Path string `yaml:"path" json:"path" validate:"nonzero"`
	// specifies the operation permission of the storage volume, read-only or writable
	ReadOnly bool `yaml:"readonly" json:"readonly"`
}

// ServiceInfo service configuration
type ServiceInfo struct {
	// specifies the unique name of the service
	Name string `yaml:"name" json:"name" validate:"regexp=^[a-zA-Z0-9][a-zA-Z0-9_-]{0\\,63}$"`
	// specifies the image of the service, usually using the docker image name
	Image string `yaml:"image" json:"image" validate:"nonzero"`
	// specifies the number of instances started
	Replica int `yaml:"replica" json:"replica" validate:"min=0"`
	// specifies the storage volumes that the service needs, map the storage volume to the directory in the container
	Mounts []MountInfo `yaml:"mounts" json:"mounts" default:"[]"`
 // specifies the port bindings which exposed by the service, only for docker container mode
	Ports []string `yaml:"ports" json:"ports" default:"[]"`
	// specifies the device bindings which used by the service, only for docker container mode
	Devices []string `yaml:"devices" json:"devices" default:"[]"`
	// specifies the startup arguments of the service program, but does not include `arg[0]`
	Args []string `yaml:"args" json:"args" default:"[]"`
	// specifies the environment variable of the service program
	Env map[string]string `yaml:"env" json:"env" default:"{}"`
	// specifies the restart policy of the instance of the service
	Restart RestartPolicyInfo `yaml:"restart" json:"restart"`
	// specifies resource limits for a single instance of the service, only for docker container mode
	Resources Resources `yaml:"resources" json:"resources"`
}

Engine

Engine is responsible for the storage volume mapping of services, instance start and stop, daemon, etc.. It abstracts the service operation, can implement different service running modes. Depending on the capabilities of the device, different running modes can be selected to run the services. The docker container mode and the native process mode are currently supported, and the k3s container mode will be supported later.

Docker Engine

The docker engine interprets the service Image as a docker image address and starts the service by calling the Docker Engine client. All services use a custom network provided by Docker Engine (default is baetyl), and the ports are exposed according to the Ports information. The directories are mapped according to the Mounts information, the devices are mapped according to the Devices information, and the resources that the containers can use, such as CPU, memory, etc., are configured according to the Resources information. Services can be accessed directly using the service name, which is routed by docker’s DNS server. Each instance of the service corresponds to a container, and the engine is responsible for starting and stopping the container.

Native Engine

On platforms that do not provide container services (such as older versions of Windows), the Native engine simulates the container’s experience as much as possible. The engine interprets the service image as the package name. The package is provided by the storage volume and contains the program required by the service, but the dependencies of this program (such as Python interpreter, Node interpreter, lib, etc.) need to be installed on the host in advance. All services use the host network directly, all ports are exposed, and users need to be careful to avoid port conflicts. Each instance of the service corresponds to a process, and the engine is responsible for starting and stopping the process.

NOTE: Process mode does not support resource restrictions, no need to expose ports, map devices.

At present, the above two modes basically achieve unified configuration, leaving only the difference in service address configuration, so the configuration in example is divided into two directories, native and docker, but will eventually be unified.

RESTful API

The Baetyl Master exposes a set of RESTful APIs, adopts HTTP/1. By default, Unix Domain Socket is used on Linux systems, and the fixed address is /var/run/baetyl.sock. Other environments use TCP. The default address is tcp://127.0.0.1:50050. At present, the authentication mode of the interface adopts a simple dynamic token. When the Master starts the services, it will dynamically generate a Token for each service, and the service name and Token are transmitted to the service instance as environment variables which can be read by instance and sent to the Master in request header. It should be noted that the dynamically launched instance cannot obtain the Token, so the dynamic instance cannot dynamically start other instances.

For the service instance, after the instance is started, you can get the API Server address of the Baetyl Master, the name and Token of the service, and the name of the instance from the environment variable. For details, see Environment Variable.

The Header key is as follows:

	x-openedge-username: service name as username

	x-openedge-password: dynamic token as password

The following are the currently available interfaces:

	GET /v1/system/inspect gets system information and status

	PUT /v1/system/update updates system and services

	GET /v1/ports/available gets available port on host

	PUT /v1/services/{serviceName}/instances/{instanceName}/start starts an instance of a service dynamically

	PUT /v1/services/{serviceName}/instances/{instanceName}/stop stops an instance of a service dynamically

	PUT /v1/services/{serviceName}/instances/{instanceName}/report reports the custom info or stats of the instance of the service

System Inspect

This interface is used to obtain the following information and status:

// Inspect all baetyl information and status inspected
type Inspect struct {
	// exception information
	Error string `json:"error,omitempty"`
	// inspect time
	Time time.Time `json:"time,omitempty"`
	// software information
	Software Software `json:"software,omitempty"`
	// hardware information
	Hardware Hardware `json:"hardware,omitempty"`
	// service information, including service name, instance running status, etc.
	Services Services `json:"services,omitempty"`
	// storage volume information, including name and version
	Volumes Volumes `json:"volumes,omitempty"`
}

// Software software information
type Software struct {
	// operating system information of host
	OS string `json:"os,omitempty"`
	// CPU information of host
	Arch string `json:"arch,omitempty"`
	// Baetyl process work directory
	PWD string `json:"pwd,omitempty"`
	// Baetyl running mode of application services
	Mode string `json:"mode,omitempty"`
	// Baetyl compiled Golang version
	GoVersion string `json:"go_version,omitempty"`
	// Baetyl release version
	BinVersion string `json:"bin_version,omitempty"`
	// Baetyl git revision
	GitRevision string `json:"git_revision,omitempty"`
	// Baetyl loaded application configuration version
	ConfVersion string `json:"conf_version,omitempty"`
}

// Hardware hardware information
type Hardware struct {
	// memory usage information of host
	MemInfo *utils.MemInfo `json:"mem_stats,omitempty"`
	// CPU usage information of host
	CPUInfo *utils.CPUInfo `json:"cpu_stats,omitempty"`
	// disk usage information of host
	DiskInfo *utils.DiskInfo `json:"disk_stats,omitempty"`
	// CPU usage information of host
	GPUInfo []utils.GPUInfo `json:"gpu_stats,omitempty"`
}

System Update

This interface is used to update the application or the master binary in the system, which called the application OTA or the master OTA. The configuration of the volumes, networks, and services will be compared during application OTA. If the service and its related configuration are not changed, the service will not be restarted, otherwise it will be restarted.

The process of application OTA is as follows:

[image: ../_images/design_app_ota.png]update

Instance Start&Stop

This interface is used to dynamically start and stop an instance of a service. You need to specify the service name and instance name. If you repeatedly launch an instance of the same name with the same service, the previously started instance will be stopped first, and then the new instance will be started.

This interface supports the dynamic configuration of the service to cover the static configuration in the storage volume. The overlay logic adopts the environment variable. When the instance starts, the environment variable can be loaded to overwrite the configuration in the storage volume to avoid resource conflicts. For example, in the native process mode, when the function manager service starts the function runtime instance, the free ports are allocated in advance, so that the function runtime instances can listen to different ports.

Instance Report

This interface is used to periodically report the custom status information of the service instance to the Baetyl Master. The content of the report is placed in the body of the request, and JSON format is used. The first layer of the JSON field is used as the key and its value will be overwritten if it is reported multiple times. For example:

If the instance of the service infer reports the following information for the first time, including info and stats:

{
 "info": {
 "company": "baidu",
 "scope": "ai"
 },
 "stats": {
 "msg_count": 124,
 "infer_count": 120
 }
}

The subsequent JSON that baetyl-agent reports to the cloud is as follows:

{
 ...
 "time": "0001-01-01T00:00:00Z",
 "services": [
 {
 "name": "infer",
 "instances": [
 {
 "name": "infer",
 "start_time": "2019-04-18T16:04:45.920152Z",
 "status": "running",
 ...

 "info": {
 "company": "baidu",
 "scope": "ai"
 },
 "stats": {
 "msg_count": 124,
 "infer_count": 120
 }
 }
]
 },
]
 ...
}

If the instance of the service infer reports the following information for the second time, containing only stats, the old stats will be overwritten:

{
 "stats": {
 "msg_count": 344,
 "infer_count": 320
 }
}

The subsequent JSON that baetyl-agent reports to the cloud is as follows, the old info is kept and the old stats is overwritten:

{
 ...
 "time": "0001-01-01T00:00:00Z",
 "services": [
 {
 "name": "infer",
 "instances": [
 {
 "name": "infer",
 "start_time": "2019-04-18T16:04:46.920152Z",
 "status": "running",
 ...

 "info": {
 "company": "baidu",
 "scope": "ai"
 },
 "stats": {
 "msg_count": 344,
 "infer_count": 320
 }
 }
]
 },
]
 ...
}

Environment Variable

Baetyl currently sets the following system environment variables for the service instance:

	BAETYL_HOST_OS: Operate system of the device (host) where Baetyl is located

	BAETYL_HOST_ID: ID of the device (host) where Baetyl is located, can be used as device fingerprint

	BAETYL_MASTER_API_ADDRESS: API Server address of the Baetyl Master

	BAETYL_MASTER_API_VERSION: API version of the Baetyl Master

	BAETYL_SERVICE_MODE: Service running mode adopted by the Baetyl Master

	BAETYL_SERVICE_NAME: The name of the service

	BAETYL_SERVICE_TOKEN: Dynamically assigned Token

	BAETYL_SERVICE_INSTANCE_NAME: The name of the instance of the service

	BAETYL_SERVICE_INSTANCE_ADDRESS: The address of the instance of the service

The official function manager service is to connect to the Baetyl Master by reading BAETYL_MASTER_API_ADDRESS. For example, the BAETYL_MASTER_API_ADDRESS under Linux system is unix:///var/run/baetyl.sock; In the container mode under other systems, the default value of BAETYL_MASTER_API_ADDRESS is tcp://host.docker.internal:50050; In the process mode under other systems, the default value of BAETYL_MASTER_API_ADDRESS is tcp://127.0.0.1:50050.

NOTE: Environment variables configured in the application will be overwritten if they are the same as the above system environment variables.

Official Modules

Currently, several modules are officially provided to meet some common application scenarios. Of course, developers can also develop their own modules.

baetyl-agent

The baetyl-agent, also known as the cloud agent module, is responsible for communicating with the BIE Cloud Management Suite. It has MQTT and HTTPS channels. MQTT enforces two-way authentication for SSL/TLS certificates. HTTPS enforces one-way authentication for SSL/TLS certificates. Developers can refer to this module to implement their own Agent module to connect their own cloud platform.

The cloud agent do three things at the moment:

	After the startup, periodically obtain status information from the Master and report it to the cloud.

	Listen to the events sent by the cloud, trigger the corresponding operations, and currently only process the application OTA event.

	Responsible for cleaning the volume directory, the master will not be notified to do APP OTA during the volume cleaning period.

After receiving the application OTA command from the BIE Cloud Management Suite, the cloud agent first downloads the storage volume data packets used in all configurations and decompresses them to the specified location. If the storage volume data packets already exist and the MD5 is the same, the download will be skipped. After all storage volumes are ready, the cloud agent module will call the Master’s /update/system interface to trigger the Master to update the system.

_NOTE: If the device cannot connect to the external network or needs to leave the cloud management suite, you can remove the Agent module from the application configuration and run offline. _

baetyl-hub

The baetyl-hub is a stand-alone version of the message subscription and distribution center that uses the MQTT3.1.1 protocol to provide reliable messaging services in low-bandwidth, unreliable networks. It acts as a messaging middleware for the Baetyl system, providing message-driven interconnect capabilities for all services.

Currently supports 4 access methods: TCP, SSL (TCP + SSL), WS (Websocket) and WSS (Websocket + SSL). The MQTT protocol support is as follows:

	Support Connect, Disconnect, Subscribe, Publish, Unsubscribe, Ping, etc.

	Support QoS levels 0 and 1

	Support Retain, Will, Clean Session

	Support topics subscribed with wildcards such as +, #

	Support validation of ClientID and Payload

	Not Support topics subscribed with prefix $

	Not Support Client’s Keep Alive feature and QoS Level 2

NOTE:

	The maximum number of separators / in the publish and subscribe topics is no more than 8, and the topic name can be up to 255 characters in length.

	The maximum length of the message message is 32k. The maximum length that can be supported is 268, 435, 455 (Byte), about 256 MB, which can be modified by the message configuration item.

	ClientID supports uppercase and lowercase letters, numbers, underscores, hyphens (minus sign), and empty characters (not allowed to be empty if CleanSession is false), up to 128 characters in length

	The QoS of the message can only be dropped. For example, when the QoS of the original message is 0, even if the subscription QoS is 1, the message is sent at the level of QoS 0.

	If certificate mutual authentication is used, the client must send a non-empty username and empty password when connecting, username will be used for topic authentication. If password is not empty, it will further check if the password is correct.

The Hub supports simple topic routing, such as subscribing to a message with the topic t and publishing it back with a new topic t/topic.

If this module does not meet your requirements, you can also use a third-party MQTT Broker/Server to replace it.

baetyl-function-manager

The baetyl-function-manager, also known as the function manager module, provides the computing power based on the MQTT message mechanism, flexible, highly available, scalable, and responsive, and compatible Baidu CFC [https://cloud.baidu.com/product/cfc.html]. It is important to note that function service do not guarantee message order, unless only one function instance is started.

The function manager module is responsible for managing all function instances and message routing rules, and supports automatic scaling. The structure diagram is as follows:

[image: ../_images/design_function.png]Structure Diagram

If the function executes incorrectly, the function server returns a message in the following format for subsequent processing. Where functionMessage is the message input by the function (the message being processed), not the message returned by the function. An example is as follows:

{
 "errorMessage": "rpc error: code = Unknown desc = Exception calling application",
 "errorType": "*errors.Err",
 "functionMessage": {
 "ID": 0,
 "QOS": 0,
 "Topic": "t",
 "Payload": "eyJpZCI6MSwiZGV2aWNlIjoiMTExIn0=",
 "FunctionName": "sayhi",
 "FunctionInvokeID": "50f8f102-2b8c-4904-86df-0728811a5a4b"
 }
}

baetyl-function-python27

The design motion of module baetyl-function-python27 is the same as the module baetyl-function-python36 ，but their python runtime are different. The module baetyl-function-python27 is based on python27 runtime，and provide the libs protobuf3、grpcio based on Python2.7.

baetyl-function-python36

baetyl-function-python36 provides Python functions similar to Baidu CFC [https://cloud.baidu.com/product/cfc.html], where users can handle messages by writing their own functions. It is very flexible to use for filtering, converting and forwarding messages. This module can be started separately as a GRPC service or as a function instance provider for the function manager module.

The input and output of a Python function can be either JSON or binary. The message Payload will try a JSON decoding (json.loads(payload)) before passing it as a parameter. If it succeeds, it will pass the dictionary type. If it fails, it will pass the original binary data.

Python functions support reading environment variables such as os.environ[‘PATH’].

Python functions support reading contexts such as context[‘functionName’].

An example is shown below:

#!/usr/bin/env python3
#-*- coding:utf-8 -*-
"""
module to say hi
"""

def handler(event, context):
 """
 function handler
 """
 event['functionName'] = context['functionName']
 event['functionInvokeID'] = context['functionInvokeID']
 event['messageQOS'] = context['messageQOS']
 event['messageTopic'] = context['messageTopic']
 event['sayhi'] = 'hello, world'
 return event

_NOTE: In the native process mode, to run sayhi.py provided in the example of this project, you need to install Python3.6 and its packages pyyaml, protobuf3 and grpcio (pip installation can be used, **pip3** install pyyaml protobuf grpcio). _

baetyl-function-node85

The design motion of module baetyl-function-node85 is the same as the module baetyl-function-python36, and provide Node8.5 runtime for Baetyl, where users can write javascripts to handle messages in JSON or binary format. An example is shown below:

#!/usr/bin/env node

exports.handler = (event, context, callback) => {
 result = {};

 if (Buffer.isBuffer(event)) {
 const message = event.toString();
 result["msg"] = message;
 result["type"] = 'non-dict';
 }else {
 result["msg"] = event;
 result["type"] = 'dict';
 }

 result["say"] = 'hello world';
 callback(null, result);
};

NOTE: In the native process mode, to run index.js provided in the example of this project, you need to install Node8.5.

baetyl-remote-mqtt

baetyl-remote-mqtt, also known as the remote MQTT communication module, bridges two MQTT Servers for message synchronization. Currently, you can configure multiple message routing rules. The structure is as follows:

[image: ../_images/design_remote_mqtt.png]Remote MQTT Communication Example

As shown in the figure above, the Baetyl remote communication module is used to forward and synchronize messages between the Baetyl Local Hub Module and the remote cloud Hub. Further, the edge-cloud collaborative message forwarding and delivery can be realized by accessing the MQTT Client at both ends.

Contributing

Welcome to Baetyl Open Source Project. To contribute to Baetyl, please follow the process below.

We sincerely appreciate your contribution. This document explains our workflow and work style.

Workflow

Baetyl use this Git branching model [https://nvie.com/posts/a-successful-git-branching-model/]. The following steps guide usual contributions.

	Fork

Our development community has been growing fast, so we encourage developers to submit code. And please file Pull Requests from your fork. To make a fork, please refer to Github page and click on the “Fork” button [https://help.github.com/articles/fork-a-repo/].

	Prepare for the development environment

go get github.com/baetyl/baetyl # clone baetyl official repository
cd $GOPATH/src/github.com/baetyl/baetyl # step into baetyl
git checkout master # verify master branch
git remote add fork https://github.com/<your_github_account>/baetyl # specify remote repository

	Push changes to your forked repository

git status # view current code change status
git add . # add all local changes
git commit -c "modify description" # commit changes with comment
git push fork # push code changes to remote repository which specifies your forked repository

	Create pull request

You can push and file a pull request to Baetyl official repository https://github.com/baetyl/baetyl. To create a pull request, please follow these steps [https://help.github.com/articles/creating-a-pull-request/]. Once the Baetyl repository reviewer approves and merges your pull request, you will see the code which contributed by you in the Baetyl official repository.

Code Review

	About Golang format, please refer to Go Code Review Comments [https://github.com/golang/go/wiki/CodeReviewComments].

	Please feel free to ping your reviewers by sending them the URL of your pull request via email. Please do this after your pull request passes the CI.

	Please answer reviewers’ every comment. If you are to follow the comment, please write “Done”; please give a reason otherwise.

	If you don’t want your reviewers to get overwhelmed by email notifications, you might reply their comments by in a batch [https://help.github.com/articles/reviewing-proposed-changes-in-a-pull-request/].

	Reduce the unnecessary commits. Some developers commit often. It is recommended to append a sequence of small changes into one commit by running git commit --amend instead of git commit.

Merge Rule

	Please run command govendor fmt +local before push changes, more details refer to govendor [https://github.com/kardianos/govendor]

	Must run command make test before push changes(unit test should be contained), and make sure all unit test and data race test passed

	Only the passed(unit test and data race test) code can be allowed to submit to Baetyl official repository

	At least one reviewer approved code can be merged into Baetyl official repository

Note: The document’s contribution rules are the same as the rules above.

	English document homepage [https://docs.baetyl.io/en/latest]

	Chinese document homepage [https://docs.baetyl.io/zh_CN/latest]

	English Document Project [https://github.com/baetyl/docs.baetyl.io]

	Chinese Document Project [https://github.com/baetyl/cn.docs.baetyl.io]

Quick Install Baetyl

Compared to manually download software in previous version, it supports installing Baetyl through package manager in newer version. With this method, users can quickly install Baetyl by simply typing a few commands at terminal.

Installation packages are provided for Ubuntu16.04, Ubuntu18.04, Debian9, CentOS7 and Raspbian-stretch currently. The supported platforms are amd64, i386, armv7l, and arm64.

Baetyl supports two running modes: docker container mode and native process mode. This document will be described in docker container mode.

Install the container runtime

Baetyl relies on docker container runtime in docker container mode. Users can install docker (for Linux-like systems) with the following command if it’s not installed yet:

curl -sSL https://get.docker.com | sh

View the version of installed docker:

docker version

NOTE：According to the Official Release Log [https://docs.docker.com/engine/release-notes/#18092], the version of docker lower than 18.09.2 has some security implications. It is recommended to install/update the docker to 18.09.2 and above.

For more details, please see the official documentation [https://docs.docker.com/install/].

Install Baetyl

The rpm and deb packages will be released accordingly when Baetyl releases a new version. Users can install Baetyl to the device through package manager with following command:

curl -sSL http://dl.baetyl.io/install.sh | sudo -E bash -

If everything is ok, Baetyl will be installed on the /usr/local directory after the execution is complete.

Import the example configuration (optional)

As an edge computing framework, Baetyl provides MQTT connect service through hub module, provides local functional service through function manager module and some runtime modules like python27, python36, nodejs85, sql and so on. What’s more, all the modules are started by Baetyl main program through a configuration file. More detailed contents about the module’s configuration please refer to Configuration Interpretation for further information.

Baetyl officially provides an example configuration for some module which can be imported using following command:

curl -sSL http://dl.baetyl.io/install_with_docker_example.sh | sudo -E bash -

The example configuration is for learning and testing purposes only. Users should perform on-demand configuration according to actual working scenarios.

There is no need to import any configuration files if no modules need to launch.

Start Baetyl

The newer version of Baetyl uses Systemd as a daemon, and users can start Baetyl with the following command:

sudo systemctl start baetyl

If you have previously installed Baetyl or imported a new configuration file, it is recommended to use the reboot method:

sudo systemctl restart baetyl

Stop Baetyl:

sudo systemctl stop baetyl

If users only want to run Baetyl in the foreground, execute the following command::

sudo baetyl start

Verify successful installation

After installation, users can verify whether Baetyl is successfully installed or not by the following steps:

	executing the command sudo systemctl status baetyl to check whether baetyl is running, as shown below. Otherwise, baetyl fails to start.

[image: ../_images/systemctl-status1.png]Baetyl

	Executing the command docker stats to view the running status of docker containers. Since the main program baetyl will first pull required images from docker mirror repository, it will take 2~5 minutes to see the baetyl starts successfully. Take the example configurations as above, the running status of containers are as shown below. If some containers are missing, it means they failed to start.

[image: ../_images/docker-stats.png]docker stats

	Under the condition of two above failures, you need to view the log of main program. And the log file which is stored in /usr/local/var/log/baetyl/baetyl.log by default. Once found errors in the log file, users can refer to FAQ. If necessary, just Submit an issue [https://github.com/baetyl/baetyl/issues].

Build Baetyl From Source

Compared to the quick installation of Baetyl, users can compile Baetyl from source to get the latest features.

Before compiling, users should configure the build environment. So this article consist of two parts: environment configuration and source code compilation.

Environment Configuration

Linux Platform

Install Go

Go to related resources to complete the download, then:

tar -C /usr/local -zxf go$VERSION.$OS-$ARCH.tar.gz # Decompress the Go archive to the /usr/local directory
export PATH=$PATH:/usr/local/go/bin # Configuring environment variables
export GOPATH=yourpath # GOPATH setting
go env # View Go's environment variables
go version # View Go's version

NOTE: Baetyl requires that the compiled version of Go should be above 1.10.0.

Install the container runtime

In docker container mode, Baetyl relies on docker container runtime. If docker is not installed yet, users can install the latest version of docker (for Linux-like systems) with the following command:

curl -sSL https://get.docker.com | sh

View the version of installed docker:

docker version

NOTE：According to the Official Release Log [https://docs.docker.com/engine/release-notes/#18092], the version of docker lower than 18.09.2 has some security implications. It is recommended to install/update the docker to 18.09.2 and above.

For more details, please see the official documentation [https://docs.docker.com/install/].

Darwin Platform

Install Go

	Install by using HomeBrew

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)" # install homebrew
brew install go

Modify the environment configuration file after the installation is complete.(e.g: ~/.bash_profile)：

export GOPATH="${HOME}/go"
export GOROOT="$(brew --prefix golang)/libexec"
export PATH="$PATH:${GOPATH}/bin:${GOROOT}/bin"

Make the environment variable take effect:

source yourfile

Create the GOPATH specified directory:

test -d "${GOPATH}" || mkdir "${GOPATH}"

	Install by using binary file

Go to related resources to complete the download, then:

tar -C /usr/local -zxf go$VERSION.$OS-$ARCH.tar.gz # Decompress the Go archive to the /usr/local directory
export PATH=$PATH:/usr/local/go/bin # Configuring environment variables
export GOPATH=yourpath # GOPATH setting
go env # View Go's environment variables
go version # View Go's version

NOTE: Baetyl requires that the compiled version of Go should be above 1.10.0.

Install the container runtime

Go to official page [https://hub.docker.com/editions/community/docker-ce-desktop-mac] to download the .dmg file you need. Once done, double-click to open and drag docker into the application folder.

[image: ../_images/docker-install-on-mac.png]Install On Darwin

View the version of installed docker:

docker version

Source Code Compilation

Download Source Code

After completing the compilation environment configuration according to the corresponding environment, go to the Baetyl Github Page [https://github.com/baetyl/baetyl] to download source code of baetyl.

go get github.com/baetyl/baetyl

Build Docker Image

In container mode, docker starts the module by running the image corresponding to each module, so build the mirror first with the following command:

cd $GOPATH/src/github.com/baetyl/baetyl
make clean
make image # build image

Note: Under the Darwin system, users need to specify the compilation parameters because the compiled images themselves are based on Linux system:

env GOOS=linux GOARCH=amd64 make image

The following docker images are generated by the above command:

baetyl-agent:latest
baetyl-hub:latest
baetyl-function-manager:latest
baetyl-remote-mqtt:latest
baetyl-timer:latest
baetyl-function-python27:latest
baetyl-function-python36:latest
baetyl-function-node85:latest

View the generated images with the following command:

docker images

Compile

cd $GOPATH/src/github.com/baetyl/baetyl
make rebuild

Note: You need to install node and npm beforehand because the Node 8.5 runtime module will call npm install command to install dependencies during make. For details, please refer to [Nodejs official website] (https://nodejs.org/en/download /).

After the compilation is completed, the following executable files will be generated in the root directory and each module directory, respectively:

baetyl
baetyl-agent/baetyl-agent
baetyl-hub/baetyl-hub
baetyl-function-manager/baetyl-function-manager
baetyl-remote-mqtt/baetyl-remote-mqtt
baetyl-timer/baetyl-timer

In addition, package.zip files are generated in each module directory.

Install

Install to default path: /usr/local。

cd $GOPATH/src/github.com/baetyl/baetyl
make install # install for docker mode with example configuration
make install-native # install for native mode with example configuration

Specify the installation path, such as installing into the output directory:

cd $GOPATH/src/github.com/baetyl/baetyl
make install PREFIX=output

On the Darwin platform, you need to set the /usr/local/var directory to make it (and it’s subdirectories) can be bind mounted into Docker containers which would be used by Baetyl.

[image: ../_images/docker-path-mount-on-mac.png]Mount path on Mac

Run

If the program is already installed to the default path: /usr/local。

sudo baetyl start

If the program has been installed to the specified path, such as installing into the output directory:

cd $GOPATH/src/github.com/baetyl/baetyl
sudo ./output/bin/baetyl start

NOTE:

	After the baetyl is started, you can check if the baetyl has run successfully by ps -ef | grep "baetyl" and determine the parameters used at startup. And you can check the log file for details. Log files are stored by default in the var/log/baetyl directory of the working directory.

	If run in docker container mode, the container runtime status can be viewed via the docker stats command.

	To use your own image, you need to modify the image of the modules and functions in the application configuration to specify your own image.

	For custom configuration, follow the instructions in Configuration Interpretation to make the relevant settings.

Uninstall

If it is the default installation:

cd $GOPATH/src/github.com/baetyl/baetyl
make clean # Can be used to clean executable files generated by compilation
make uninstall # Uninstall if you install in docker mode
make uninstall-native # Uninstall if you install in native mode

If the installation path is specified, for example, it is installed into the output directory.

cd $GOPATH/src/github.com/baetyl/baetyl
make clean # Can be used to clean executable files generated by compilation
make uninstall PREFIX=output # Uninstall if you install in docker mode
make uninstall-native PREFIX=output # Uninstall if you install in native mode

Baetyl Configuration Interpretation

Supported units:

	Size unit: b(byte), k(kilobyte), m(megabyte), g(gigabyte)

	Time unit: s(second), m(minute), h(hour)

Configuration examples can be found in the example directory of this project.

Master Configuration

The Master configuration and application configuration are separated. The default configuration file is etc/baetyl/conf.yml in the working directory. The configuration is interpreted as follows:

mode: The default value is `docker`, running mode of services. **docker** container mode or **native** process mode
grace: The default value is `30s`, the timeout for waiting services to gracefully exit.
server: API Server configuration of Master.
 address: The default value can be read from environment variable `BAETYL_MASTER_API_ADDRESS`, address of API Server.
 timeout: The default value is `30s`, timeout of API Server.
logger: Logger configuration
 path: The default is `empty` (none configuration), that is, it does not write to the file. If the path is specified, it writes to the file.
 level: The default value is `info`, log level, support `debug`、`info`、`warn` and `error`.
 format: The default value is `text`, log print format, support `text` and `json`.
 age:
 max: The default value is `15`, means maximum number of days the log file is kept.
 size:
 max: The default value is `50`, log file size limit, default unit is `MB`.
 backup:
 max: The default value is `15`, the maximum number of log files to keep.

Application Configuration

The default configuration file for the application configuration is var/db/baetyl/application.yml in the working directory. The configuration is interpreted as follows:

version: Application version
services: Service list configuration
 - name: [MUST] Service name, must be unique in the service list
 image: [MUST] Service entry. In the docker container mode, which means the address of image. In the native process mode indicates where the service program package is located.
 replica: The default value is 0, the number of service copies, indicating the number of service instances started. Usually the service only needs to start one. The function runtime service is generally set to 0, not started by the Master, but is dynamically started by the function manager service.
 mounts: Storage volume mapping list
 - name: [MUST] The volume name, corresponding to one of the storage volume lists
 path: [MUST] The path mapped by the volume in the container
 readonly: The default value is false, whether the storage volume is read-only
 ports: Ports exposed in docker container mode, for example
 - 0.0.0.0:1883:1883
 - 0.0.0.0:1884:1884/tcp
 - 8080:8080/tcp
 - 9884:8884
 devices: Device mapping in docker container mode, for example
 - /dev/video0
 - /dev/sda:/dev/xvdc:r
 args: Service instance startup arguments, for example
 - '-c'
 - 'conf/conf.yml'
 env: Environment variables of service instance, for example
 version: v1
 restart: Service restart policy configuration
 retry:
 max: The default is `empty`(none configuration), which means always retry. If not, which means the maximum number of service restarts.
 policy: The default value is `always`, restart policy, support `no`, `always` and `on-failure`. And `no` means none restart, `always` means always restart, `on-failure` means restart the service if it exits abnormally.
 backoff:
 min: The default value is `1s`, minimum interval of restart.
 max: The default value is `5m`, maximum interval of restart.
 factor: The default value is `2`, factor of interval increase.
 resources: Service instance resource limit configuration in docker container mode
 cpu:
 cpus: The percentage of CPU available of the service instance, for example `1.5`, means that `1.5` CPU cores can be used.
 setcpus: The CPU core available for the service instance, for example `0-2`, means that `0` to `2` CPU cores can be used; `0` means that the 0th CPU core can be used; `1`, which means the 1st CPU core can be used.
 memory:
 limit: The available memory of the service, for example `500m`, means that 500 megabytes of memory can be used.
 swap: The swap space available to the service, for example `1g`, means that 1G of memory can be used.
 pids:
 limit: Number of processes the service can create.
volumes: Storage volume list
 - name: [MUST] The volume name, must be unique in the list of storage volumes
 path: [MUST] The path of the storage volume on the host, relative to the working directory of the Master

baetyl-agent Configuration

remote:
 mqtt: MQTT channel configuration
 clientid: [MUST] The Client ID, must be the id of cloud core device.
 address: [MUST] The endpoint address for client to connect with cloud management suit, must use ssl endpoint.
 username: [MUST] The client username, must be the username of cloud core device.
 ca: [MUST] The CA path for client to connect with cloud management suit.
 key: [MUST] The private key path for client to connect with cloud management suit.
 cert: [MUST] The public key path for client to connect with cloud management suit.
 timeout: The default value is `30s`, means timeout of the client connects to cloud.
 interval: The default value is `1m`, means maximum interval of client reconnection, doubled from 500 microseconds to maximum.
 keepalive: The default value is `1m`, means keep alive time between the client and cloud after connection has been established.
 cleansession: The default value is `false`, , means whether keep session in cloud after client disconnected.
 validatesubs: The default value is `false`, means whether the client checks the subscription result. If it is true, client exits and return errors when subscription is failure.
 buffersize: The default value is `10`, means the size of the memory queue sent by the client to the cloud management suit. If found exception, the client will exit and lose message.
 http: HTTPS channel configuration
 address: This address is automatically inferred based on the address of the MQTT channel. No configuration required
 timeout: The default value is `30s`, connection timeout period
 report: Agent report configuration.
 url: The report URL. No configuration required
 topic: The template of report topic. No configuration required
 interval: The default value is `20s`, interval of reporting.
 desire: Agent desire configuration.
 topic: The template of desire topic. No configuration required

baetyl-hub Configuration

listen: [MUST] Listening address, for example
 - tcp://0.0.0.0:1883
 - ssl://0.0.0.0:1884
 - ws://:8080/mqtt
 - wss://:8884/mqtt
certificate: SSL/TLS certificate authentication configuration, if `ssl` or `wss` is enabled, it must be configured.
 ca: Server CA certificate path
 key: Server private key path
 cert: Server public key path
principals: ACL configuration. If not configured, client cannot connect to this Hub, support username/password and certificate authentication.
 - username: Username for client non-ssl connection
 password: Password for client connection
 permissions:
 - action: Operation type of permission. `pub` means publish permission, `sub` means subscription permission.
 permit: List of topics allowed by the operation type, support `+` and `#` wildcards.
 - username: Username for client ssl connection
 permissions:
 - action: Operation type of permission. `pub` means publish permission, `sub` means subscription permission.
 permit: List of topics allowed by the operation type, support `+` and `#` wildcards.
subscriptions: Topic routing configuration
 - source:
 topic: subscribe topic
 qos: QoS of topic
 target:
 topic: publish topic
 qos: QoS of topic
message: MQTT message related configuration
 length:
 max: The default value is `32k`, which means maximum message length that can be allowed to be transmitted. The maximum can be set to 268,435,455 Byte(about 256MB).
 ingress: Message receive configuration
 qos0:
 buffer:
 size: The default value is `10000`, means the number of messages that can be cached in memory with QoS0. Increasing the cache can improve the performance of message reception. If the device loses power, it will directly discard the message with QoS0.
 qos1:
 buffer:
 size: The default value is `100`, means the message cache size of waiting for persistent with QoS1. Increasing the cache can improve the performance of message reception, but the potential risk is that the service will exit abnormally(such as device power failure), it will lose the cached message, and will not reply(puback). The service exits normally and waits for the cached message to be processed without losing data.
 batch:
 max: The default value is `50`, means the maximum number of messages with QoS1 can be insert into the database (persistence). After the message is persisted, it will reply with confirmation(ack).
 cleanup:
 retention: The default value is `48h`, means the time that the message with QoS1 can be saved in the database. Messages that exceed this time will be physically deleted during cleanup.
 interval: The default value is `1m`, means cleanup interval with QoS1.
 egress: Message publish configuration
 qos0:
 buffer:
 size: The default value is `10000`, means the number of messages to be sent in the in-memory cache wit QoS0. If the device is powered off, the message will be discarded directly. After the buffer is full, the newly pushed message will be discarded directly.
 qos1:
 buffer:
 size: The default value is `100`, means the size of the message buffer is not confirmed(ack) after the message with QoS1 is sent. After the buffer is full, the new message is no longer read, and the message in the cache is always acknowledged(ack). After the message with QoS1 is sent to the client, it waits for the client to confirm(puback). If the client does not reply within the specified time, the message will be resent until the client replies or the session is closed.
 batch:
 max: The default value is `50`, means the maximum number of messages read from the database in batches.
 retry:
 interval: The default value is `20s`, means the re-publish interval of message.
 offset: Message serial number persistence related configuration
 buffer:
 size: The default value is `10000`, means the size of the cache queue for the serial number of the message that was acknowledged(ack). For example, three messages with QoS1 and serial numbers 1, 2, and 3 are sent to the client in batches. The client confirms the messages of sequence numbers 1 and 3. At this time, sequence number 1 will be queued and persisted. Although sequence number 3 has been confirmed, it still has to wait for the serial number 2 to be confirmed before entering the column. This design can ensure that the message can be recovered from the persistent serial number after the service restarts abnormally, ensuring that the message is not lost, but the message retransmission will occur, and therefore the message with QoS 2 is not supported.
 batch:
 max: The default value is `100`, means the maximum number of batches of message serial numbers can be insert into the database.
logger: Logger configuration
 path: The default is `empty` (none configuration), that is, it does not write to the file. If the path is specified, it writes to the file.
 level: The default value is `info`, log level, support `debug`、`info`、`warn` and `error`.
 format: The default value is `text`, log print format, support `text` and `json`.
 age:
 max: The default value is `15`, means maximum number of days the log file is kept.
 size:
 max: The default value is `50`, log file size limit, default unit is `MB`.
 backup:
 max: The default value is `15`, the maximum number of log files to keep.
status: Service status configuration
 logging:
 enable: The default value is `false`, means whether to print baetyl status information.
 interval: The default value is `60s`, means interval of printing baetyl status information.
storage: Database storage configuration
 dir: The default value is `var/db/baetyl/data`, means database storage directory.
shutdown: Service exit configuration
 timeout: The default value is `10m`, means timeout of service exit.

baetyl-function-manager Configuration

hub:
 clientid: [MUST] The Client ID for the client to connect with the local Hub.
 address: [MUST] The endpoint address for the client to connect with the local Hub.
 username: The username for the client to connect with the local hub.
 password: The password for the client to connect with the local hub.
 ca: The CA path for the client to connect with the local hub.
 key: The private key path for the client to connect with the local hub.
 cert: The public key path for the client to connect with the local hub.
 timeout: The default value is `30s`, means timeout of the client connection with the local hub.
 interval: The default value is `1m`, means maximum interval of client reconnection, doubled from 500 microseconds to maximum.
 keepalive: The default value is `1m`, means keep alive time between the client and the local hub after connection has been established.
 cleansession: The default value is `false`, , means whether keep session in the local Hub after client disconnected.
 validatesubs: The default value is `false`, means whether the client checks the subscription result. If it is true, client exits and return errors when subscription is failure.
 buffersize: The default value is `10`, means the size of the memory queue sent by the client to the local Hub. If found exception, the client will exit and lose messages.
rules: Router rules configuration
 - clientid: [MUST] The Client ID for client to connect with the local Hub
 subscribe:
 topic: [MUST] The message topic subscribed from the local Hub.
 qos: The default value is `0`, the message QoS subscribed from the local Hub.
 function:
 name: [MUST] The name of the function that processes the message.
 publish:
 topic: [MUST] The message topic published to the local Hub.
 qos: The default value is `0`, means the message QoS published to the local Hub.
functions:
 - name: [MUST] The function name, must be unique in the function list.
 service: [MUST] The service name which provides the function runtime instance.
 instance: function instance configuration
 min: The default value is `0`, means the minimum number of function instance. And the minimum configuration allowed to be set is `0`, the maximum configuration allowed to be set is `100`.
 max: The default value is `1`, means the maximum number of function instance. And the minimum configuration allowed to be set is `1`, the maximum configuration allowed to be set is `100`.
 idletime: The default value is `10m`, maximum idle time of function instance.
 evicttime: The default value is `1m`, interval time between two evict operations.
 message:
 length:
 max: The default value is `4m`, means the maximum message length allowed for function instances to be received and publish.
 backoff:
 max: The default value is `1m`, the maximum reconnection interval of the client connection function instance
 timeout: The default value is `30s`, Client connection function instance timeout

baetyl-function-python Configuration

the configurations of the two modules are the same, so we can follow this sample below
server: GRPC Server configuration; Do not configure if the instances of this service are managed by baetyl-function-manager
 address: GRPC Server address, <host>:<port>
 workers:
 max: The default value is the number of CPU core multiplied by 5, the maximum capacity of the thread pool
 concurrent:
 max: The default value is `empty`, means no limit, the maximum number of concurrent connections
 message:
 length:
 max: The default value is `4m`, the maximum message length allowed for function instances to receive and send
 ca: Server CA certificate path
 key: Server private key path
 cert: Server public key path
functions: function list
 - name: [MUST] The function name, must be unique in the function list.
 handler: [MUST] The function of Python code to handle message, for example, 'sayhi.handler'
 codedir: [MUST] The path of Python code
logger: Logger configuration
 path: The default is `empty` (none configuration), that is, it does not write to the file. If the path is specified, it writes to the file.
 level: The default value is `info`, log level, support `debug`、`info`、`warn` and `error`.
 format: The default value is `text`, log print format, support `text` and `json`.
 age:
 max: The default value is `15`, means maximum number of days the log file is kept.
 size:
 max: The default value is `50`, log file size limit, default unit is `MB`.
 backup:
 max: The default value is `15`, the maximum number of log files to keep.

baetyl-remote-mqtt Configuration

hub:
 clientid: [MUST] The Client ID for the client to connect with the local Hub.
 address: [MUST] The endpoint address for the client to connect with the local Hub.
 username: The username for the client to connect with the local hub.
 password: The password for the client to connect with the local hub.
 ca: The CA path for the client to connect with the local hub.
 key: The private key path for the client to connect with the local hub.
 cert: The public key path for the client to connect with the local hub.
 timeout: The default value is `30s`, means timeout of the client connection with the local hub.
 interval: The default value is `1m`, means maximum interval of client reconnection, doubled from 500 microseconds to maximum.
 keepalive: The default value is `1m`, means keep alive time between the client and the local hub after connection has been established.
 cleansession: The default value is `false`, , means whether keep session in the local Hub after client disconnected.
 validatesubs: The default value is `false`, means whether the client checks the subscription result. If it is true, client exits and return errors when subscription is failure.
 buffersize: The default value is `10`, means the size of the memory queue sent by the client to the local Hub. If found exception, the client will exit and lose messages.
rules: Message routing rules configuration
 - hub:
 clientid: The client ID for the client to connect with the local Hub.
 subscriptions: The topics subscribed by client from Hub, for example
 - topic: say
 qos: 1
 - topic: hi
 qos: 0
 remote:
 name: [MUST] The remote name, must be one of the remote list
 clientid: The client ID for the client to connect with remote Hub.
 subscriptions: The topics subscribed by client from remote Hub, for example
 - topic: remote/say
 qos: 0
 - topic: remote/hi
 qos: 0
remotes: The remote list
 - name: [MUST] The remote name, must be unique in this list.
 clientid: The client ID for the client to connect with the remote Hub.
 address: [MUST] The address for the client connect with the remote Hub.
 username: The username for the client connect with the remote Hub.
 password: The password for the client connect with the remote Hub.
 ca: The CA path for the client connect with the remote Hub.
 key: The private key path for the client connect with the remote Hub.
 cert: The public key path for the client connect with the remote Hub.
 timeout: The default value is `30s`, means timeout of the client connect to the remote Hub.
 interval: The default value is `1m`, means maximum interval of client reconnection, doubled from 500 microseconds to maximum.
 keepalive: The default value is `1m`, means keep alive time between the client and the local hub after connection has been established.
 cleansession: The default value is `false`, , means whether keep session in the local Hub after client disconnected.
 validatesubs: The default value is `false`, means whether the client checks the subscription result. If it is true, client exits and return errors when subscription is failure.
 buffersize: The default value is `10`, means the size of the memory queue sent by the client to the local Hub. If found exception, the client will exit and lose messages.
logger: Logger configuration
 path: The default is `empty` (none configuration), that is, it does not write to the file. If the path is specified, it writes to the file.
 level: The default value is `info`, log level, support `debug`、`info`、`warn` and `error`.
 format: The default value is `text`, log print format, support `text` and `json`.
 age:
 max: The default value is `15`, means maximum number of days the log file is kept.
 size:
 max: The default value is `50`, log file size limit, default unit is `MB`.
 backup:
 max: The default value is `15`, the maximum number of log files to keep.

baetyl-timer Configuration

hub: Hub configuration
 address: The address for the client to connect with the Hub.
 username: The username for the client to connect with the Hub.
 password: The password for the client to connect with the Hub.
 clientid: The client id for the client to connect with the Hub.
timer: timer configuration
 interval: Timing interval
publish:
 topic: The message topic published to the Hub.
 payload: The payload data, for example
 id: 1
logger: Logger configuration
 path: The default is `empty` (none configuration), that is, it does not write to the file. If the path is specified, it writes to the file.
 level: The default value is `info`, log level, support `debug`、`info`、`warn` and `error`.

Device connect to Baetyl with Hub service

Statement:

	The device system used in this test is Ubuntu 18.04

	MQTT.fx and MQTTBox are MQTT Clients in this test, which MQTT.fx used for TCP and SSL connection test and MQTTBox used for WS (Websocket) connection test.

	The hub service image used is the official image published in the Baetyl Cloud Management Suite: hub.baidubce.com/baetyl/baetyl-hub

	You can also compile the required Hub service image by using Baetyl source code. Please see How to build image from source code

The complete configuration reference for Hub Module Configuration.

NOTE：Darwin can install Baetyl by using Baetyl source code. Please see How to build image from source code.

Workflow

	Step 1: Install Baetyl and its example configuration, more details please refer to How-to-quick-install-Baetyl

	Step 2: Modify the configuration according to the usage requirements, and then execute sudo systemctl start baetyl to start the Baetyl in Docker container mode, or execute sudo systemctl restart baetyl to restart the Baetyl. Then execute the command sudo systemctl status baetyl to check whether baetyl is running.

	Step 3: Configure the MQTT Client according to the connection protocol selected.

	If TCP protocol was selected, you only need to configure the username and password(see the configuration option username and password of principals) and fill in the corresponding port.

	If SSL protocol was selected, username, private key, certificate and CA should be need. then fill in the corresponding port;

	If WS protocol was selected, you only need to configure the username, password, and corresponding port.

	Step 4: If all the above steps are normal and operations are correct, you can check the connection status through the log of Baetyl or MQTT Client.

Connection Test

If the Baetyl’s example configuration is installed according to Step 1, to modify the configuration of the application and Hub service.

Baetyl Application Configuration

If the official installation method is used, replace the Baetyl application configuration with the following configuration:

/usr/local/var/db/baetyl/application.yml
version: v0
services:
 - name: localhub
 image: hub.baidubce.com/baetyl/baetyl-hub
 replica: 1
 ports:
 - 1883:1883
 - 8883:8883
 - 8080:8080
 mounts:
 - name: localhub-conf
 path: etc/baetyl
 readonly: true
 - name: localhub-cert
 path: var/db/baetyl/cert
 readonly: true
 - name: localhub-data
 path: var/db/baetyl/data
 - name: localhub-log
 path: var/log/baetyl
volumes:
 - name: localhub-conf
 path: var/db/baetyl/localhub-conf
 - name: localhub-data
 path: var/db/baetyl/localhub-data
 - name: localhub-cert
 path: var/db/baetyl/localhub-cert-only-for-test
 - name: localhub-log
 path: var/db/baetyl/localhub-log

Replace the configuration of the Baetyl Hub service with the following configuration:

/usr/local/var/db/baetyl/localhub-conf/service.yml
listen:
 - tcp://0.0.0.0:1883
 - ssl://0.0.0.0:8883
 - ws://0.0.0.0:8080/mqtt
certificate:
 ca: var/db/baetyl/cert/ca.pem
 cert: var/db/baetyl/cert/server.pem
 key: var/db/baetyl/cert/server.key
principals:
 - username: two-way-tls
 permissions:
 - action: 'pub'
 permit: ['tls/#']
 - action: 'sub'
 permit: ['tls/#']
 - username: test
 password: hahaha
 permissions:
 - action: 'pub'
 permit: ['#']
 - action: 'sub'
 permit: ['#']
subscriptions:
 - source:
 topic: 't'
 target:
 topic: 't/topic'
logger:
 path: var/log/baetyl/service.log
 level: 'debug'

Baetyl Startup

According to Step 2, execute sudo systemctl start baetyl to start Baetyl in Docker mode and then execute the command sudo systemctl status baetyl to check whether baetyl is running. The normal situation is shown as below.

[image: ../_images/systemctl-status.png]Baetyl status

NOTE：Darwin can install Baetyl by using Baetyl source code, and excute sudo baetyl start to start the Baetyl in Docker container mode.

Look at the log of the Baetyl master by executing sudo tail -f /usr/local/var/log/baetyl/baetyl.log as shown below:

[image: ../_images/master-start-log.png]Baetyl startup

As you can see, the image of Hub service has been loaded after Baetyl starts up normally. Alternatively, you can use docker ps command to check which docker container is currently running.

[image: ../_images/docker-ps.png]docker ps

Container mode requires port mapping, allowing external access to the container, the configuration item is the ports field in the main program configuration file.

As mentioned above, when the Hub Module starts, it will open ports 1883, 8883 and 8080 at the same time, which are used for TCP, SSL, WS (Websocket) protocol. Then we will use MQTTBox and MQTT.fx as MQTT client to check the connection between MQTT client and Baetyl.

TCP Connection Test

Startup MQTT.fx, enter the Edit Connection Profiles page, fill in the Profile Name, Broker Address and Port according to the connection configuration of Baetyl Hub service, and then configure the username & password in User Credentials according to the principals configuration. Then click Apply button to complete the connection configuration of MQTT.fx with TCP protocol.

[image: ../_images/mqttbox-tcp-connect-config.png]TCP connection configuration

Then close the configuration page, select the Profile Name configured, then click Connect button, if the connection configuration information matches the principals configuration of Baetyl Hub service, you can see the connection success flag which as shown below.

[image: ../_images/mqttbox-tcp-connect-success.png]TCP connection success

SSL Connection Test

Startup MQTT.fx and enter the Edit Connection Profiles page. Similar to the TCP connection configuration, fill in the profile name, broker address, and port. For SSL protocol, you need to fill in the username in User Credentials and configure SSL/TLS option as shown below. Then click the Apply button to complete the connection configuration of MQTT.fx in SSL connection method.

[image: ../_images/mqttbox-ssl-connect-config1.png]SSL connection configuration1

[image: ../_images/mqttbox-ssl-connect-config2.png]SSL connection configuration2

Then close the configuration page, select the Profile Name configured, then click Connect button, if the connection configuration information matches the principals configuration of Baetyl Hub service, you can see the connection success flag which as shown below.

[image: ../_images/mqttbox-ssl-connect-success.png]SSL connection success

WS (Websocket) Connection Test

Startup MQTTBox, enter the Client creation page, select the ws protocol, configure the broker address and port according to the Baetyl Hub service, fill in the username and password according to the principals configuration option, and click the save button. Then complete the connection configuration of MQTTBox in WS connection method which as shown below.

[image: ../_images/mqttbox-ws-connect-config.png]WS（Websocket）connection configuration

Once the above operation is correct, you can see the sign of successful connection with Baetyl Hub in MQTTBox, which is shown in the figure as below.

[image: ../_images/mqttbox-ws-connect-success.png]WS（Websocket）connection success

In summary, we successfully completed the connection test for the Baetyl Hub service through MQTT.fx and MQTTBox. In addition, we can also write test scripts to connect to Baetyl Hub through Paho MQTT. For details, please refer to Related Resources Download.

Message transferring among devices with Local Hub Service

Statement

	The operating system as mentioned in this document is Ubuntu 18.04.

	The MQTT client toolkit as mentioned in this document is MQTTBox.

NOTE：Darwin can install Baetyl by using Baetyl source code. Please see How to build image from source code.

Different from Device connect to Baetyl with Hub service, if you want to transfer MQTT messages among multiple MQTT clients, you need to configure the connect information, topic permission, and router rules. More detailed configuration of Hub service, please refer to Hub service configuration.

This document uses the TCP connection method as an example to test the message routing and forwarding capabilities of the Hub service.

Workflow

	Step 1: Install Baetyl and its example configuration, more details please refer to How-to-quick-install-Baetyl

	Step 2: Modify the configuration according to the usage requirements, and then execute sudo systemctl start baetyl to start the Baetyl in Docker container mode, or execute sudo systemctl restart baetyl to restart the Baetyl. Then execute the command sudo systemctl status baetyl to check whether baetyl is running.

	Step 3：MQTTBox connect to Hub Service by TCP connection method, more detailed contents please refer to Device connect to Baetyl with Hub service.

	If connect successfully, then subscribe the MQTT topic due to the configuration of Hub Service.

	If connect unsuccessfully, then retry Step 3 operation until it connect successfully.

	Step 4：Check the publishing and receiving messages via MQTTBox.

Message Routing Test

The Baetyl application configuration is replaced with the following configuration:

/usr/local/var/db/baetyl/application.yml
version: V2
services:
 - name: hub
 image: 'hub.baidubce.com/baetyl/baetyl-hub'
 replica: 1
 ports:
 - '1883:1883'
 mounts:
 - name: localhub-conf
 path: etc/baetyl
 readonly: true
 - name: localhub_data
 path: var/db/baetyl/data
 - name: log-V1
 path: var/log/baetyl
volumes:
 - name: localhub-conf
 path: var/db/baetyl/localhub-conf/V1
 - name: log-V1
 path: var/db/baetyl/log
 - name: localhub_data
 path: var/db/baetyl/localhub_data

The Baetyl Hub service configuration is replaced with the following configuration:

/usr/local/var/db/baetyl/localhub-conf/service.yml
listen:
 - tcp://0.0.0.0:1883
principals:
 - username: 'test'
 password: 'hahaha'
 permissions:
 - action: 'pub'
 permit: ['#']
 - action: 'sub'
 permit: ['#']
subscriptions:
 - source:
 topic: 't'
 target:
 topic: 't/topic'
logger:
 path: var/log/baetyl/service.log
 level: 'debug'

As configured above, message routing rules depends on the subscriptions configuration item, which means that messages published to the topic t will be forwarded to all devices(users, or mqtt clients) that subscribe the topic t/topic.

NOTE: In the above configuration, the permitted topics which are configured in permit item support the + and # wildcards configuration. More detailed contents of + and # wildcards will be explained as follows.

wildcard

For MQTT protocol [http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html], the number sign(# U+0023) is a wildcard character that matches any number of levels within a topic. The multi-level wildcard represents the parent and any number of child levels. The multi-level wildcard character MUST be specified either on its own or following a topic level separator(/ U+002F). In either case it MUST be the last character specified in the topic.

For example, the configuration of permit item of sub action is sport/tennis/player1/#, it would receive messages published using these topic names:

	sport/tennis/player1

	sport/tennis/player1/ranking

	sport/tennis/player1/score/wimbledon

Besides, topic sport/# also matches the singular sport, since # includes the parent level.

For Baetyl, if the topic # is configured in the permit item list(whether pub action or sub action), there is no need to configure any other topics. And the specified account(depends on username/password) will have permission to all legal topics of MQTT protocol.

+ wildcard

As described in the MQTT protocol, the plus sign(+ U+002B) is a wildcard character that matches only one topic level. The single-level wildcard can be used at any level in the topic, including first and last levels. Where it is used it MUST occupy an entire level of the topic. It can be used at more than one level in the topic and can be used in conjunction with the multi-level wildcard.

For example, topic sport/tennis/+ matches sport/tennis/player1 and sport/tennis/player2, but not sport/tennis/player1/ranking. Also, because the single-level wildcard matches only a single level, sport/+ does not match sport but it does match sport/.

For Baetyl, if the topic + is configured in the permit item list(whether pub action or sub action), the specified account(depends on username/password) will have permission to all single-level legal topics of MQTT protocol.

NOTE: For MQTT protocol, wildcard ONLY can be used in Topic Filter(sub action), and MUST NOT be used in Topic Name(pub action). But in the design of Baetyl, in order to enhance the flexibility of the topic permissions configuration, wildcard configured in permit item(whether in pub action or sub action) is valid, as long as the topic of the published or subscribed meets the requirements of MQTT protocol is ok. In particular, wildcards (# and +) policies are recommended for developers who need to configure a large number of publish and subscribe topics in the principals configuration.

Message Transfer Test Among Devices

The message transferring and routing workflow among devices are as follows:

[image: ../_images/trans-flow.png]Message transfer test among devices

Specifically, as shown in the above figure, client1, client2, and client3 respectively establish a connection to Baetyl with Hub Service, client1 has the permission to publish messages to the topic t, and client2 and client3 respectively have the permission to subscribe topic t and t/topic.

Once the connection to Baetyl for the above three clients with Hub Service is established, as the configuration of the above three clients, client2 and client3 will respectively get the message from client1 published to the topic t to Hub Service.

In particular, client1, client2, and client3 can be combined into one client, and the new client will have the permission to publish messages to the topic t, with permissions to subscribe messages to the topic t and t/topic. Here, using MQTTBox as the new client, click the Add subscriber button to subscribe the topic t and t/topic.

Then clicks the Publish button to publish message with the payload This is a new message. and with the topic t to Hub service, you will find this message is received by MQTTBox with the subscribed topics t and t/topic. More detailed contents are as below.

[image: ../_images/mqttbox-tcp-trans-message-success.png]MQTTBox received message successfully

In summary, the message forwarding and routing test between devices based on Hub service is completed through MQTTBox.

Message handling with Local Function Service

Statement

	The operating system as mentioned in this document is Ubuntu 18.04.

	The version of runtime is Python3.6, and for Python2.7, configuration is the same except fot the language difference when coding the scripts

	The MQTT client toolkit as mentioned in this document is MQTTBox.

	The docker image used in this document is compiled from the Baetyl source code. More detailed contents please refer to Build Baetyl from source.

	In this article, the service created based on the Hub service is called Hub service.

NOTE：Darwin can install Baetyl by using Baetyl source code. Please see How to build image from source code.

Different from the Hub service to transfer message among devices(mqtt clients), this document describes the message handling with Local Function Manager service(also include Hub service and Python3.6 runtime service). In the document, Hub service is used to establish connection between Baetyl and mqtt client, Python3.6 runtime service is used to handle MQTT messages, and the Local Function Manager service is used to combine Hub service with Python3.6 runtime service with message context.

This document will take the TCP connection method as an example to show the message handling, calculation and forwarding with Local Function Manager service.

Workflow

	Step 1: Install Baetyl and its example configuration, more details please refer to How-to-quick-install-Baetyl

	Step 2: Modify the configuration according to the usage requirements, and then execute sudo systemctl start baetyl to start the Baetyl in Docker container mode, or execute sudo systemctl restart baetyl to restart the Baetyl. Then execute the command sudo systemctl status baetyl to check whether baetyl is running.

	Step 3：MQTTBox connect to Hub Service by TCP connection method, more detailed contents please refer to Device connect to Baetyl with Hub service

	If connect successfully, then subscribe the MQTT topic due to the configuration of Hub Service, and observe the log of Baetyl.

	If the Baetyl’s log shows that the Python Runtime Service has been started, it indicates that the published message was handled by the specified function.

	If the Baetyl’s log shows that the Python Runtime Service has not been started, then retry it until the Python Runtime Service has been started.

	If connect unsuccessfully, then retry Step 3 operation until it connect successfully

	Step 4：Check the publishing and receiving messages via MQTTBox.

[image: ../_images/python-flow.png]Workflow of using Local Function Manager Service to handle MQTT messages

Message Handling Test

If the Baetyl’s example configuration is installed according to Step 1, to modify the configuration of the application, Hub service and function services.

Change the Baetyl application configuration to the following configuration:

/usr/local/var/db/baetyl/application.yml
version: v0
services:
 - name: localhub
 image: hub.baidubce.com/baetyl/baetyl-hub
 replica: 1
 ports:
 - 1883:1883
 mounts:
 - name: localhub-conf
 path: etc/baetyl
 readonly: true
 - name: localhub-data
 path: var/db/baetyl/data
 - name: localhub-log
 path: var/log/baetyl
 - name: function-manager
 image: hub.baidubce.com/baetyl/baetyl-function-manager
 replica: 1
 mounts:
 - name: function-manager-conf
 path: etc/baetyl
 readonly: true
 - name: function-manager-log
 path: var/log/baetyl
 - name: function-python27-sayhi
 image: hub.baidubce.com/baetyl/baetyl-function-python27
 replica: 0
 mounts:
 - name: function-sayhi-conf
 path: etc/baetyl
 readonly: true
 - name: function-sayhi-code
 path: var/db/baetyl/function-sayhi
 readonly: true
 - name: function-python36-sayhi
 image: hub.baidubce.com/baetyl/baetyl-function-python36
 replica: 0
 mounts:
 - name: function-sayhi-conf
 path: etc/baetyl
 readonly: true
 - name: function-sayhi-code
 path: var/db/baetyl/function-sayhi
 readonly: true
 - name: function-node85-sayhi
 image: hub.baidubce.com/baetyl/baetyl-function-node85
 replica: 0
 mounts:
 - name: function-sayjs-conf
 path: etc/baetyl
 readonly: true
 - name: function-sayjs-code
 path: var/db/baetyl/function-sayhi
 readonly: true
 - name: function-sql-filter
 image: hub.baidubce.com/baetyl/baetyl-function-sql
 replica: 0
 mounts:
 - name: function-filter-conf
 path: etc/baetyl
 readonly: true
volumes:
 # hub
 - name: localhub-conf
 path: var/db/baetyl/localhub-conf
 - name: localhub-data
 path: var/db/baetyl/localhub-data
 - name: localhub-cert
 path: var/db/baetyl/localhub-cert-only-for-test
 - name: localhub-log
 path: var/db/baetyl/localhub-log
 # function
 - name: function-manager-conf
 path: var/db/baetyl/function-manager-conf
 - name: function-manager-log
 path: var/db/baetyl/function-manager-log
 - name: function-sayhi-conf
 path: var/db/baetyl/function-sayhi-conf
 - name: function-sayhi-code
 path: var/db/baetyl/function-sayhi-code
 - name: function-sayjs-conf
 path: var/db/baetyl/function-sayjs-conf
 - name: function-sayjs-code
 path: var/db/baetyl/function-sayjs-code
 - name: function-filter-conf
 path: var/db/baetyl/function-filter-conf

Change the Baetyl Hub service configuration to the following configuration:

/usr/local/var/db/baetyl/localhub-conf/service.yml
listen:
 - tcp://0.0.0.0:1883
principals:
 - username: test
 password: hahaha
 permissions:
 - action: 'pub'
 permit: ['#']
 - action: 'sub'
 permit: ['#']
subscriptions:
 - source:
 topic: 't'
 target:
 topic: 't/topic'
logger:
 path: var/log/baetyl/service.log
 level: "debug"

The configuration of the Baetyl local function services do not need to be modified. The specific configuration is as follows:

/usr/local/var/db/baetyl/function-manager-conf/service.yml
hub:
 address: tcp://localhub:1883
 username: test
 password: hahaha
rules:
 - clientid: func-python27-sayhi-1
 subscribe:
 topic: t
 function:
 name: python27-sayhi
 publish:
 topic: t/py2hi
 - clientid: func-sql-filter-1
 subscribe:
 topic: t
 qos: 1
 function:
 name: sql-filter
 publish:
 topic: t/sqlfilter
 qos: 1
 - clientid: func-python36-sayhi-1
 subscribe:
 topic: t
 function:
 name: python36-sayhi
 publish:
 topic: t/py3hi
 - clientid: func-node85-sayhi-1
 subscribe:
 topic: t
 function:
 name: node85-sayhi
 publish:
 topic: t/node8hi
functions:
 - name: python27-sayhi
 service: function-python27-sayhi
 instance:
 min: 0
 max: 10
 - name: sql-filter
 service: function-sql-filter
 - name: python36-sayhi
 service: function-python36-sayhi
 - name: node85-sayhi
 service: function-node85-sayhi
logger:
 path: var/log/baetyl/service.log
 level: "debug"

/usr/local/var/db/baetyl/function-filter-conf/service.yml
functions:
 - name: sql-filter
 handler: 'select qos() as qos, topic() as topic, * where id < 10'

/usr/local/var/db/baetyl/function-sayhi-conf/service.yml
functions:
 - name: 'python27-sayhi'
 handler: 'index.handler'
 codedir: 'var/db/baetyl/function-sayhi'
 - name: 'python36-sayhi'
 handler: 'index.handler'
 codedir: 'var/db/baetyl/function-sayhi'

/usr/local/var/db/baetyl/function-sayjs-conf/service.yml
functions:
 - name: 'node85-sayhi'
 handler: 'index.handler'
 codedir: 'var/db/baetyl/function-sayhi'

Python function code does not need to be changed. /usr/local/var/db/baetyl/function-sayhi-code/index.py is implemented as follows:

#!/usr/bin/env python
-*- coding:utf-8 -*-
"""
function to say hi in python
"""

def handler(event, context):
 """
 function handler
 """
 res = {}
 if isinstance(event, dict):
 if "err" in event:
 raise TypeError(event['err'])
 res = event
 elif isinstance(event, bytes):
 res['bytes'] = event.decode("utf-8")

 if 'messageQOS' in context:
 res['messageQOS'] = context['messageQOS']
 if 'messageTopic' in context:
 res['messageTopic'] = context['messageTopic']
 if 'messageTimestamp' in context:
 res['messageTimestamp'] = context['messageTimestamp']
 if 'functionName' in context:
 res['functionName'] = context['functionName']
 if 'functionInvokeID' in context:
 res['functionInvokeID'] = context['functionInvokeID']

 res['Say'] = 'Hello Baetyl'
 return res

The Node function code does not need to be changed. /usr/local/var/db/baetyl/function-sayjs-code/index.js is implemented as follows:

#!/usr/bin/env node

const hasAttr = (obj, attr) => {
 if (obj instanceof Object && !(obj instanceof Array)) {
 if (obj[attr] != undefined) {
 return true;
 }
 }
 return false;
};

const passParameters = (event, context) => {
 if (hasAttr(context, 'messageQOS')) {
 event['messageQOS'] = context['messageQOS'];
 }
 if (hasAttr(context, 'messageTopic')) {
 event['messageTopic'] = context['messageTopic'];
 }
 if (hasAttr(context, 'messageTimestamp')) {
 event['messageTimestamp'] = context['messageTimestamp'];
 }
 if (hasAttr(context, 'functionName')) {
 event['functionName'] = context['functionName'];
 }
 if (hasAttr(context, 'functionInvokeID')) {
 event['functionInvokeID'] = context['functionInvokeID'];
 }
};

exports.handler = (event, context, callback) => {
 // support Buffer & json object
 if (Buffer.isBuffer(event)) {
 const message = event.toString();
 event = {}
 event["bytes"] = message;
 }
 else if("err" in event) {
 return callback(new TypeError(event['err']))
 }

 passParameters(event, context);
 event['Say'] = 'Hello Baetyl'
 callback(null, event);
};

As configured above, if the MQTTBox has established a connection with the Hub service based on the above configuration, a message with the topic t is sent to the Hub, and the function service will route the message to python27-sayhi, python36-sayhi, node85-sayhi and sql-filter functions to process, and messages with topic t/py2hi, t/py3hi, t/node8hi, and t/sqlfilter are output separately. At this time, the MQTT client subscribed to the topic # will receive these messages, as well as the original message t and the message with topic t/topic which is renamed by Hub service directly .

NOTE: Any function that appears in the rules configuration must be configured in the functions configuration, otherwise the function runtime instances can not be started normally.

Baetyl Start

According to Step 2, execute sudo systemctl start baetyl to start Baetyl in Docker mode and then execute the command sudo systemctl status baetyl to check whether baetyl is running.

NOTE：Darwin can install Baetyl by using Baetyl source code, and excute sudo baetyl start to start the Baetyl in Docker container mode.

Look at the log of the Baetyl master by executing sudo tail -f -n 40 /usr/local/var/log/baetyl/baetyl.log as shown below:

[image: ../_images/function-start-log.png]Baetyl start

Also, we can execute the command docker ps to view the list of docker containers currently running.

[image: ../_images/docker-ps1.png]View the list of docker containers currently running

After comparison, it is not difficult to find that the Hub service and the function service have been successfully loaded when Baetyl starts. The function runtime instance is not started because the function runtime instance is dynamically started by function service when a message is triggered.

MQTTBox Establish Connection

In this test, we configured the connection information of MQTTBox by TCP connection, and then clicked the Add subscriber button to subscribe to the topic #, which is used to receive all messages received by the Hub services.

Message Handling Check

By looking at the /usr/local/var/db/baetyl/function-sayhi-code/index.py code file, you can see that after receiving a message, the function handler will perform a series of processes and return the result. The returned results include some context information, such as messageTopic, functionName, and so on.

Here, we publish the message {"id":1} with the topic t to Hub service via MQTTBox, and then observe the receiving messages as follows.

[image: ../_images/mqttbox-tcp-process-success.png]MQTTBox received messages

After sending the message, we quickly execute the command docker ps to see the list of the currently running containers. All function runtime service instances are started. The result is shown below.

[image: ../_images/docker-ps-after-trigger.png]View the list of docker containers

In summary, we simulated the process of local processing of messages through the Hub service and function services. It can be seen that the framework is very suitable to process message flows at edge.

Message Synchronize between Baetyl-Hub and Baidu IoTHub via Baetyl-Remote-MQTT module

Statement

	The operating system as mentioned in this document is Ubuntu18.04.

	It should be installed for Baetyl when you read this document, more details please refer to Quick-install-Baetyl

	The MQTT client toolkit which is used to connect to Baidu IoTHub is MQTT.fx

	The MQTT client toolkit which is used to connect to Baetyl-Hub is MQTTBox.

	The hub and Baetyl-Remote-MQTT module images used have published by BIE Cloud Management Suite [https://cloud.baidu.com/product/bie.html]: hub.baidubce.com/baetyl/baetyl-hub:latest、hub.baidubce.com/baetyl/baetyl-remote-mqtt:latest

	Docker images compiled from the Baetyl source code also can be used. More detailed contents please refer to Build Baetyl from source

	The Remote Hub as mentioned in this document is Baidu IoTHub [https://cloud.baidu.com/product/iot.html]

The Baetyl-Remote-MQTT module was developed to meet the needs of the IoT scenario. The Baetyl(via Baetyl-Hub module) can synchronize message with Remote Hub services(Baidu IoTHub [https://cloud.baidu.com/product/iot.html]) via the Baetyl-Remote-MQTT module. That is to say, through the Baetyl-Remote-MQTT module, we can either subscribe the message from Remote Hub and publish it to the Baetyl-Hub module or subscribe the message from Baetyl-Hub module and publish it to Remote Hub service. The configuration of Baetyl-Remote-MQTT module can refer to Baetyl-Remote-MQTT module Configuration.

Workflow

	Step 1：Create device(MQTT client) connection info(include endpoint, user, principal, policy, etc.) via Baidu IoTHub.

	Step 2：Select MQTT.fx as the MQTT client that used to connect to Baidu IoTHub.

	If connect successfully, then do the following next.

	If connect unsuccessfully, then retry it until it connect successfully. More detailed contents can refer to How to connect to Baidu IoTHub via MQTT.fx [https://cloud.baidu.com/doc/IOT/s/Sjwvy72aq]。

	Step 3：Startup Baetyl in docker container mode, and observe the log of Baetyl.

	If the Baetyl-Hub module and Baetyl-Remote-MQTT module start successfully, then do the following next.

	If the Baetyl-Hub module and Baetyl-Remote-MQTT module start unsuccessfully, then retry Step 3 until they start successfully.

	Step 4：Select MQTTBox as the MQTT client that used to connect to the Baetyl-Hub.

	If connect successfully, then do the following next.

	If connect unsuccessfully, then retry Step 4 until it connect successfully.

	Step 5：Due to the configuration of Baetyl-Remote-MQTT module, using MQTTBox publish message to the specified topic, and observing the receiving message via MQTT.fx. Similarly, using MQTT.fx publish message to the specified topic, and observing the receiving message via MQTTBox.

	Step 6：If both parties in Step 5 can receive the message content posted by the other one, it indicates the Remote function test passes smoothly.

The workflow diagram are as follows.

[image: ../_images/remote-flow.png]using Baetyl-Remote-MQTT module to synchronize message

Message Synchronize via Baetyl-Remote-MQTT module

Configuration file location for the Baetyl main program is: var/db/baetyl/application.yml.

The configuration of Baetyl Master are as follows:

version: v0
services:
 - name: localhub
 image: hub.baidubce.com/baetyl/baetyl-hub:latest
 replica: 1
 ports:
 - 1883:1883
 mounts:
 - name: localhub-conf
 path: etc/baetyl
 readonly: true
 - name: localhub-data
 path: var/db/baetyl/data
 - name: localhub-log
 path: var/log/baetyl
 - name: remote-iothub
 image: hub.baidubce.com/baetyl/baetyl-remote-mqtt:latest
 replica: 1
 mounts:
 - name: remote-iothub-conf
 path: etc/baetyl
 readonly: true
 - name: remote-iothub-cert
 path: var/db/baetyl/cert
 readonly: true
 - name: remote-iothub-log
 path: var/log/baetyl
volumes:
 # hub
 - name: localhub-conf
 path: var/db/baetyl/localhub-conf
 - name: localhub-data
 path: var/db/baetyl/localhub-data
 - name: localhub-log
 path: var/db/baetyl/localhub-log
 # remote mqtt
 - name: remote-iothub-conf
 path: var/db/baetyl/remote-iothub-conf
 - name: remote-iothub-cert
 path: var/db/baetyl/remote-iothub-cert
 - name: remote-iothub-log
 path: var/db/baetyl/remote-iothub-log

Configuration file location for Baetyl-Hub module is: var/db/baetyl/localhub-conf/service.yml.

The configuration of Baetyl-Hub module is as follow:

listen:
 - tcp://0.0.0.0:1883
principals:
 - username: test
 password: hahaha
 permissions:
 - action: 'pub'
 permit: ['#']
 - action: 'sub'
 permit: ['#']
logger:
 path: var/log/baetyl/localhub-service.log
 level: "debug"

Configuration file location for Baetyl-Remote-MQTT module is: var/db/baetyl/remote-iothub-conf/service.yml.

The configuration of Baetyl-Remote-MQTT module is as follow:

name: remote-iothub
hub:
 address: tcp://localhub:1883
 username: test
 password: hahaha
remotes:
 - name: iothub
 address: 'ssl://xxxxxx.mqtt.iot.bj.baidubce.com:1884'
 clientid: remote-iothub-1
 username: xxxx/test
 ca: var/db/baetyl/cert/ca.pem
 cert: var/db/baetyl/cert/client.pem
 key: var/db/baetyl/cert/client.key
rules:
 - hub:
 subscriptions:
 - topic: t1
 remote:
 name: iothub
 subscriptions:
 - topic: t2
 qos: 1
logger:
 path: var/log/baetyl/remote-service.log
 level: 'debug'

According to the configuration of the above, it means that the Baetyl-Remote-MQTT module subscribes the topic t1 from the Baetyl-Hub module, subscribes the topic t2 from Baidu IoTHub. When MQTTBox publishes a message to the topic t1, the Baetyl-Hub module will receive this message and forward it to Baidu IoTHub via Baetyl-Remote-MQTT module, and MQTT.fx will also receive this message(suppose MQTT.fx has already subscribed the topic t1 before) from Baidu IoTHub. Similarly, When we use MQTT.fx to publish a message to the topic t2, then Baidu IoTHub will receive it and forward it to the Baetyl-Hub module via Baetyl-Remote-MQTT module. Finally, MQTTBox will receive this message(suppose MQTTBox has already subscribed the topic t2 before).

In a word, from MQTTBox publishes a message to the topic t1, to MQTT.fx receives the message, the routing path of the message are as follows.

MQTTBox -> Baetyl-Hub module -> Baetyl-Remote-MQTT module -> Baidu IoTHub -> MQTT.fx

Similarly, from MQTT.fx publishes a message to the topic t2, to MQTTBox receives the message, the routing path of the message are as follows.

MQTT.fx -> Baidu IoTHub -> Baetyl-Remote-MQTT module -> Baetyl-Hub module -> MQTTBox

Establish a Connection between MQTT.fx and Baidu IoTHub

As described in Step 1, Step 2, the detailed contents of the connection between MQTT.fx and Baidu IoTHub are as follows.

[image: ../_images/cloud-iothub-config.png]Create endpoint via Baidu IoTHub

[image: ../_images/mqttfx-connect-hub-config.png]Configuration of MQTT.fx

After set the configuration of MQTT.fx, click OK or Apply button, then click Connect button, and wait for the connecting. Also, we can check if the connection status is OK via the color button. When the button’s color change to Green, that is to say, the connection is established. Then switch to the Subscribe page and subscribe the topic t1. More detailed contents are shown below.

[image: ../_images/mqttfx-connect-success.png]Successfully establish a connection between MQTT.fx and Baidu IoTHub

Establish a Connection between MQTTBox and the Baetyl-Hub module

As described in Step 3, the Baetyl-Hub module and Baetyl-Remote-MQTT module also loaded when Baetyl started. Also, we can lookup the running status of Baetyl through the command sudo systemctl status baetyl.

[image: ../_images/systemctl-status.png]lookup the running status of Baetyl

In addition, we can execute the command docker stats to view the list of docker containers currently running on the system.

[image: ../_images/docker-ps-after-remote-start.png]View the list of docker containers currently running

After Baetyl successfully startup, set the configuration of connection, then establish the connection with the Baetyl-Hub module and subscribe the topic t2.

[image: ../_images/mqttbox-sub-t2-success.png]MQTTBox successfully subscribe the topic t2

Message Synchronize Test

Here, MQTT.fx and MQTTBox will be used as message publishers, and the other one will be used as a message receiver.

MQTT.fx publishes message, and MQTTBox receives message

Firstly, using MQTT.fx publishes a message This message is from MQTT.fx. to the topic t2.

[image: ../_images/mqttfx-pub-t2-success.png]Publishing a message to the topic t2 via MQTT.fx

At the same time, observing the message receiving status of MQTTBox via the topic t2.

[image: ../_images/mqttbox-receive-t2-message-success.png]MQTTBox successfully received the message

MQTTBox publishes message, and MQTT.fx receives message

Similarly, publishing the message This message is from MQTTBox. to the topic t1 via MQTTBox.

[image: ../_images/mqttbox-pub-t1-success.png]Publishing a message to the topic t1 via MQTTBox

Then we can observe the message receiving status of MQTT.fx via the topic t1.

[image: ../_images/mqttfx-receive-t1-message-success.png]MQTT.fx successfully received the message

In summary, both MQTT.fx and MQTTBox have correctly received the specified message, and the content is consistent.

How to write a python script for Python runtime

Statement

	The operating system as mentioned in this document is Ubuntu16.04.

	The version of runtime is Python3.6, and for Python2.7, configuration is the same except for the language difference when coding the scripts

	The MQTT client toolkit as mentioned in this document is MQTTBox.

	In this article, the service created based on the Hub module is called localhub service. And for the test case mentioned here, the localhub service, function calculation service, and other services are configured as follows:

The configuration of Local Hub service
Configuration file location is: `var/db/baetyl/localhub-conf/service.yml`.
listen:
 - tcp://0.0.0.0:1883
principals:
 - username: 'test'
 password: 'hahaha'
 permissions:
 - action: 'pub'
 permit: ['#']
 - action: 'sub'
 permit: ['#']

The configuration of Local Function Manager service
Configuration file location is: var/db/baetyl/function-manager-conf/service.yml
hub:
 address: tcp://localhub:1883
 username: test
 password: hahaha
rules:
 - clientid: localfunc-1
 subscribe:
 topic: py
 function:
 name: sayhi3
 publish:
 topic: py/hi
functions:
 - name: sayhi3
 service: function-sayhi3
 instance:
 min: 0
 max: 10
 idletime: 1m

The configuration of python function runtime
Configuration file location is: var/db/baetyl/function-sayhi-conf/service.yml
functions:
 - name: 'sayhi3'
 handler: 'sayhi.handler'
 codedir: 'var/db/baetyl/function-sayhi'

The configuration of application.yml
Configuration file location is: var/db/baetyl/application.yml
version: v0
services:
 - name: localhub
 image: hub.baidubce.com/baetyl/baetyl-hub
 replica: 1
 ports:
 - 1883:1883
 mounts:
 - name: localhub-conf
 path: etc/baetyl
 readonly: true
 - name: localhub-data
 path: var/db/baetyl/data
 - name: localhub-log
 path: var/log/baetyl
 - name: function-manager
 image: hub.baidubce.com/baetyl/baetyl-function-manager
 replica: 1
 mounts:
 - name: function-manager-conf
 path: etc/baetyl
 readonly: true
 - name: function-manager-log
 path: var/log/baetyl
 - name: function-sayhi3
 image: hub.baidubce.com/baetyl/baetyl-function-python36
 replica: 0
 mounts:
 - name: function-sayhi-conf
 path: etc/baetyl
 readonly: true
 - name: function-sayhi-code
 path: var/db/baetyl/function-sayhi
 readonly: true
volumes:
 # hub
 - name: localhub-conf
 path: var/db/baetyl/localhub-conf
 - name: localhub-data
 path: var/db/baetyl/localhub-data
 - name: localhub-log
 path: var/db/baetyl/localhub-log
 # function manager
 - name: function-manager-conf
 path: var/db/baetyl/function-manager-conf
 - name: function-manager-log
 path: var/db/baetyl/function-manager-log
 # function python runtime sayhi
 - name: function-sayhi-conf
 path: var/db/baetyl/function-sayhi-conf
 - name: function-sayhi-code
 path: var/db/baetyl/function-sayhi-code

Baetyl officially provides the Python runtime to load python scripts written by users. The following description is about the name of the python script, the execution function name, input, output parameters, and so on.

Function Name Convention

The name of a python script can refer to Python’s universal naming convention, which Baetyl does not specifically limit. If you want to apply a python script to handle an MQTT message, the configuration of Python3.6 runtime service is as follows:

functions:
 - name: 'sayhi3'
 handler: 'sayhi.handler'
 codedir: 'var/db/baetyl/function-sayhi'

Here, we focus on the handler attribute, where sayhi represents the script name and the handler represents the entry function called in the file.

function-sayhi-code/
├── __init__.py
└── sayhi.py

More detailed configuration of Python runtime, please refer to Python runtime configuration.

Parameter Convention

def handler(event, context):
 # do something
 return event

The Python runtime provided by Baetyl supports two parameters: event and context, which are described separately below.

	event：Depend on the Payload in the MQTT message

	If the original Payload is a json format data, then pass in the data handled by json.loads(Payload)

	If the original Payload is Byte, string(not Json), then pass in the original Payload。

	context：MQTT message context

	context.messageQOS // MQTT QoS

	context.messageTopic // MQTT Topic

	context.functionName // MQTT functionName

	context.functionInvokeID //MQTT function invokeID

	context.invokeid // as above, be used to compatible with CFC [https://cloud.baidu.com/product/cfc.html]

NOTE: When testing in the cloud CFC, please don’t use the context defined by Baetyl directly. The recommended method is to first determine whether the field is exists or not in the context. If exists, read it.

Hello World

Now we will implement a simple python script with the goal of appending a hello world message to each MQTT message. For a dictionary format message, return it directly, and for an none dictionary format message, convert it to string and return.

#!/usr/bin/env python3
-*- coding: utf-8 -*-

def handler(event, context):
 result = {}
 if isinstance(event, dict):
 result['msg'] = event
 result['type'] = 'dict'
 result['say'] = 'hello world'
 else:
 result['msg'] = event.decode("utf-8")
 result['type'] = 'non-dict'
 result['say'] = 'hello world'

 return result

Publish a dict format message:

[image: ../_images/write-python-script-dict.png]Publish a dict format message

Publish an non-dict format message:

[image: ../_images/write-python-script-none-dict.png]Publish an non-dict format message

As above, for some general needs, we can implement it through the Python Standard Library. However, for some more complex demands, it is often necessary to import third-party libraries to complete. How to solve the problem? We’ve provided a general solution in How to import third-party libraries for Python runtime.

How to write a javascript for Node runtime

Statement：

	The operating system as mentioned in this document is Ubuntu16.04.

	The version of runtime is Node8.5

	The MQTT client toolkit as mentioned in this document is MQTTBox.

	In this article, the service created based on the Hub module is called localhub service. And for the test case mentioned here, the localhub service, function calculation service, and other services are configured as follows:

The configuration of Local Hub service
Configuration file location is: var/db/baetyl/localhub-conf/service.yml
listen:
 - tcp://0.0.0.0:1883
principals:
 - username: 'test'
 password: 'hahaha'
 permissions:
 - action: 'pub'
 permit: ['#']
 - action: 'sub'
 permit: ['#']

The configuration of Local Function Manager service
Configuration file location is: var/db/baetyl/function-manager-conf/service.yml
hub:
 address: tcp://localhub:1883
 username: test
 password: hahaha
rules:
 - clientid: localfunc-1
 subscribe:
 topic: node
 function:
 name: sayhi
 publish:
 topic: t/hi
functions:
 - name: sayhi
 service: function-sayhi
 instance:
 min: 0
 max: 10
 idletime: 1m

The configuration of Node function runtime
Configuration file location is: var/db/baetyl/function-sayjs-conf/service.yml
functions:
 - name: 'sayhi'
 handler: 'index.handler'
 codedir: 'var/db/baetyl/function-sayhi'

The configuration of application.yml
Configuration file location is: var/db/baetyl/application.yml
version: v0
services:
 - name: localhub
 image: hub.baidubce.com/baetyl/baetyl-hub
 replica: 1
 ports:
 - 1883:1883
 mounts:
 - name: localhub-conf
 path: etc/baetyl
 readonly: true
 - name: localhub-data
 path: var/db/baetyl/data
 - name: localhub-log
 path: var/log/baetyl
 - name: function-manager
 image: hub.baidubce.com/baetyl/baetyl-function-manager
 replica: 1
 mounts:
 - name: function-manager-conf
 path: etc/baetyl
 readonly: true
 - name: function-manager-log
 path: var/log/baetyl
 - name: function-sayhi
 image: hub.baidubce.com/baetyl/baetyl-function-node85
 replica: 0
 mounts:
 - name: function-sayjs-conf
 path: etc/baetyl
 readonly: true
 - name: function-sayjs-code
 path: var/db/baetyl/function-sayhi
 readonly: true
volumes:
 # hub
 - name: localhub-conf
 path: var/db/baetyl/localhub-conf
 - name: localhub-data
 path: var/db/baetyl/localhub-data
 - name: localhub-log
 path: var/db/baetyl/localhub-log
 # function manager
 - name: function-manager-conf
 path: var/db/baetyl/function-manager-conf
 - name: function-manager-log
 path: var/db/baetyl/function-manager-log
 # function node runtime sayhi
 - name: function-sayjs-conf
 path: var/db/baetyl/function-sayjs-conf
 - name: function-sayjs-code
 path: var/db/baetyl/function-sayjs-code

Baetyl officially provides the Node runtime to load javascripts written by users. The following description is about the name of a javascript, the execution function name, input, output parameters, and so on.

Function Name Convention

The name of a javascript can refer to universal naming convention, which Baetyl does not specifically limit. If you want to apply a javascript to handle an MQTT message, the configuration of Node runtime service is as follows:

functions:
 - name: 'sayhi'
 handler: 'index.handler'
 codedir: 'var/db/baetyl/function-sayhi'

Here, we focus on the handler attribute, where index represents the script name and the handler represents the entry function called in the file.

function-sayjs-code/
└── index.js

More detailed configuration of Node runtime, please refer to Node runtime configuration.

Parameter Convention

exports.handler = (event, context, callback) => {
 callback(null, event);
};

The Node runtime provided by Baetyl supports two parameters: event and context, which are described separately below.

	event：Depend on the Payload in the MQTT message

	If the original Payload is a json format data, then pass in the data handled by json.loads(Payload)

	If the original Payload is Byte, string(not Json), then pass in the original Payload。

	context：MQTT message context

	context.messageQOS // MQTT QoS

	context.messageTopic // MQTT Topic

	context.functionName // MQTT functionName

	context.functionInvokeID //MQTT function invokeID

	context.invokeid // as above, be used to compatible with CFC [https://cloud.baidu.com/product/cfc.html]

NOTE: When testing in the cloud CFC, please don’t use the context defined by Baetyl directly. The recommended method is to first determine whether the field is exists or not in the context. If exists, read it.

Hello World

Now we will implement a simple javascript with the goal of appending a hello world message to each MQTT message. For a dictionary format message, return it directly, and for an none dictionary format message, convert it to string and return.

#!/usr/bin/env node

exports.handler = (event, context, callback) => {
 result = {};

 if (Buffer.isBuffer(event)) {
 const message = event.toString();
 result["msg"] = message;
 result["type"] = 'non-dict';
 }else {
 result["msg"] = event;
 result["type"] = 'dict';
 }

 result["say"] = 'hello world';
 callback(null, result);
};

Publish a dict format message:

[image: ../_images/write-node-script-dict.png]发送字典类数据

Publish an non-dict format message:

[image: ../_images/write-node-script-none-dict.png]发送非字典类数据

As above, for some general needs, we can implement it through the Node Standard Library. However, for some more complex demands, it is often necessary to import third-party libraries to complete. How to solve the problem? We’ve provided a general solution in How to import third-party libraries for Node runtime.

How to import third-party libraries for Python runtime

Statement

	The operating system as mentioned in this document is Ubuntu16.04.

	The version of runtime is Python3.6, and for Python2.7, configurations are the same except for the language differences when coding the scripts.

	The MQTT client toolkit as mentioned in this document is MQTTBox.

	In this document, the third-party libraries we’ll import are requests [https://pypi.org/project/requests] and Pytorch [https://pytorch.org/].

	In this article, the service created based on the Hub module is called localhub service. And for the test case mentioned here, the localhub service, function calculation service, and other services are configured as follows:

The configuration of localhub service
Configuration file location is: var/db/baetyl/localhub-conf/service.yml
listen:
 - tcp://0.0.0.0:1883
principals:
 - username: 'test'
 password: 'hahaha'
 permissions:
 - action: 'pub'
 permit: ['#']
 - action: 'sub'
 permit: ['#']

The configuration of Local Function Manager service
Configuration file location is: var/db/baetyl/function-manager-conf/service.yml
hub:
 address: tcp://localhub:1883
 username: test
 password: hahaha
rules:
 - clientid: localfunc-1
 subscribe:
 topic: py
 function:
 name: sayhi3
 publish:
 topic: py/hi
functions:
 - name: sayhi3
 service: function-sayhi3
 instance:
 min: 0
 max: 10
 idletime: 1m

The configuration of application.yml
Configuration file location is: var/db/baetyl/application.yml
version: v0
services:
 - name: localhub
 image: hub.baidubce.com/baetyl/baetyl-hub
 replica: 1
 ports:
 - 1883:1883
 mounts:
 - name: localhub-conf
 path: etc/baetyl
 readonly: true
 - name: localhub-data
 path: var/db/baetyl/data
 - name: localhub-log
 path: var/log/baetyl
 - name: function-manager
 image: hub.baidubce.com/baetyl/baetyl-function-manager
 replica: 1
 mounts:
 - name: function-manager-conf
 path: etc/baetyl
 readonly: true
 - name: function-manager-log
 path: var/log/baetyl
 - name: function-sayhi3
 image: hub.baidubce.com/baetyl/baetyl-function-python36
 replica: 0
 mounts:
 - name: function-sayhi-conf
 path: etc/baetyl
 readonly: true
 - name: function-sayhi-code
 path: var/db/baetyl/function-sayhi
 readonly: true
volumes:
 # hub
 - name: localhub-conf
 path: var/db/baetyl/localhub-conf
 - name: localhub-data
 path: var/db/baetyl/localhub-data
 - name: localhub-log
 path: var/db/baetyl/localhub-log
 # function manager
 - name: function-manager-conf
 path: var/db/baetyl/function-manager-conf
 - name: function-manager-log
 path: var/db/baetyl/function-manager-log
 # function python runtime sayhi
 - name: function-sayhi-conf
 path: var/db/baetyl/function-sayhi-conf
 - name: function-sayhi-code
 path: var/db/baetyl/function-sayhi-code

Generally, using the Python Standard Library may not meet our needs. In fact, it is often necessary to import some third-party libraries. Two examples are given below.

Import requests third-party libraries

Suppose we want to crawl a website and get the response. Here, we can import a third-party library requests [https://pypi.org/project/requests]. How to import it, as shown below:

	Step 1: change path to the directory of Python scripts, then download requests package and its dependency packages(idna、urllib3、chardet、certifi)

cd /directory/of/Python/script
pip download requests

	Step 2: inflate the downloaded .whl files for getting the source packages, then remove useless .whl files and package-description files

unzip *.whl
rm -rf *.whl *.dist-info

	Step 3: make the current directory be a package

touch __init__.py

	Step 4: import the third-party library requests in the Python script as shown below:

import requests

	Step 5: execute your Python script

python your_script.py

If the above operations are normal, the resulting script directory structure is as shown in the following figure.

[image: ../_images/python-third-lib-dir-requests.png]the directory of the Python script

Now we write the Python script get.py to get the headers information of https://baidu.com, assuming the trigger condition is that Python3.6 runtime receives the “A” command from the localhub service. More detailed contents are as follows:

#!/usr/bin/env python3
-*- coding: utf-8 -*-

import requests

def handler(event, context):
 """
 data: {"action": "A"}
 """
 if 'action' in event:
 if event['action'] == 'A':
 r = requests.get('https://baidu.com')
 if str(r.status_code) == '200':
 event['info'] = dict(r.headers)
 else:
 event['info'] = 'exception found'
 else:
 event['info'] = 'action error'
 else:
 event['error'] = 'action not found'

return event

The configuration of Python function runtime is as below:

The configuration of Python function runtime
functions:
 - name: 'sayhi3'
 handler: 'get.handler'
 codedir: 'var/db/baetyl/function-sayhi'

As above, after receiving the message publish to the topic py, the localhub service will call the get.py script to handle, and following it publish the result to the topic py/hi. So in the test case, we use MQTTBox to subscribe the topic py/hi and publish the message {"action": "A"} to the localhub service by the topic py. If everything works correctly, MQTTBox can receive the message of the topic py/hi which contains the headers information of https://baidu.com as shown below.

[image: ../_images/write-python-script-third-lib-requests.png]Get the header information of https://baetyl.io

Import Pytorch third-party libraries

Pytorch is a widely used deep learning framework for machine learning. We can import a third-party library Pytorch [https://pytorch.org/] to use its functions. How to import it, as shown below:

	Step 1: change path to the directory of Python scripts, then download Pytorch package and its dependency packages(PIL、caffee2、numpy、six、torchvision)

cd /directory/of/Python/script
pip3 download torch torchvision

	Step 2: inflate the downloaded .whl files for getting the source packages, then remove useless .whl files and package-description files

unzip *.whl
rm -rf *.whl *.dist-info

	Step 3: make the current directory be a package

touch __init__.py

	Step 4: import the third-party library Pytorch in the Python script as shown below:

import torch

	Step 5: execute your Python script

python your_script.py

If the above operations are normal, the resulting script directory structure is as shown in the following figure.

[image: ../_images/python-third-lib-dir-Pytorch.png]the directory of the Python script

Now we write the Python script calc.py to use functions provided by Pytorch for generating a random tensor, assuming the trigger condition is that Python3.6 runtime receives the “B” command from the localhub service. More detailed contents are as follows:

#!/usr/bin/env python3
-*- coding: utf-8 -*-

import torch

def handler(event, context):
 """
 data: {"action": "B"}
 """
 if 'action' in event:
 if event['action'] == 'B':
 x = torch.rand(5, 3)
 event['info'] = x.tolist()
 else:
 event['info'] = 'exception found'
 else:
 event['error'] = 'action not found'

 return event

The configuration of Python function runtime is as below:

The configuration of Python function runtime
functions:
 - name: 'sayhi3'
 handler: 'calc.handler'
 codedir: 'var/db/baetyl/function-sayhi'

As above, after receiving the message publish to the topic py, the localhub service will call the calc.py script to handle, and following it publish the result to the topic py/hi. So in the test case, we use MQTTBox to subscribe the topic py/hi and publish the message {"action": "B"} to the localhub service by the topic py. If everything works correctly, MQTTBox can receive the message of the topic py/hi in which we can get a random tensor as shown below.

[image: ../_images/write-python-script-third-lib-Pytorch.png]generate a random tensor

How to import third-party libraries for Node runtime

Statement：

	The operating system as mentioned in this document is Ubuntu16.04.

	The version of runtime is Node8.5

	The MQTT client toolkit as mentioned in this document is MQTTBox.

	In this document, we give an example about how import the third-party library Lodash [https://www.lodashjs.com/].

	In this article, the service created based on the Hub module is called localhub service. And for the test case mentioned here, the localhub service, function calculation service, and other services are configured as follows:

The configuration of Local Hub service
Configuration file location is: var/db/baetyl/localhub-conf/service.yml
listen:
 - tcp://0.0.0.0:1883
principals:
 - username: 'test'
 password: 'hahaha'
 permissions:
 - action: 'pub'
 permit: ['#']
 - action: 'sub'
 permit: ['#']

The configuration of Local Function Manager service
Configuration file location is: var/db/baetyl/function-manager-conf/service.yml
hub:
 address: tcp://localhub:1883
 username: test
 password: hahaha
rules:
 - clientid: localfunc-1
 subscribe:
 topic: node
 function:
 name: sayhi
 publish:
 topic: t/hi
functions:
 - name: sayhi
 service: function-sayhi
 instance:
 min: 0
 max: 10
 idletime: 1m

The configuration of application.yml
Configuration file location is: var/db/baetyl/application.yml
version: v0
services:
 - name: localhub
 image: hub.baidubce.com/baetyl/baetyl-hub
 replica: 1
 ports:
 - 1883:1883
 mounts:
 - name: localhub-conf
 path: etc/baetyl
 readonly: true
 - name: localhub-data
 path: var/db/baetyl/data
 - name: localhub-log
 path: var/log/baetyl
 - name: function-manager
 image: hub.baidubce.com/baetyl/baetyl-function-manager
 replica: 1
 mounts:
 - name: function-manager-conf
 path: etc/baetyl
 readonly: true
 - name: function-manager-log
 path: var/log/baetyl
 - name: function-sayhi
 image: hub.baidubce.com/baetyl/baetyl-function-node85
 replica: 0
 mounts:
 - name: function-sayjs-conf
 path: etc/baetyl
 readonly: true
 - name: function-sayjs-code
 path: var/db/baetyl/function-sayhi
 readonly: true
volumes:
 # hub
 - name: localhub-conf
 path: var/db/baetyl/localhub-conf
 - name: localhub-data
 path: var/db/baetyl/localhub-data
 - name: localhub-log
 path: var/db/baetyl/localhub-log
 # function manager
 - name: function-manager-conf
 path: var/db/baetyl/function-manager-conf
 - name: function-manager-log
 path: var/db/baetyl/function-manager-log
 # function node runtime sayhi
 - name: function-sayjs-conf
 path: var/db/baetyl/function-sayjs-conf
 - name: function-sayjs-code
 path: var/db/baetyl/function-sayjs-code

Generally, using the Node Standard Library may not meet our needs. In fact, it is often necessary to import some third-party libraries. We’ll give one example below.

Import Lodash third-party libraries

Lodash is a modern JavaScript utility library delivering modularity, performance & extras. Baetyl support import third-party libraries such as Lodash [https://www.lodashjs.com/] to use its functions. How to import it, as shown below:

	Step 1: change path to the directory of javascripts, then install Lodash package

cd /directory/of/Node/script
npm install --save lodash

	Step 2: import Lodash in a javascript:

const _ = require('lodash');

	Step 3: execute your javascript:

node your_script.js

If the above operations are normal, the resulting script directory structure is as shown in the following figure.

[image: ../_images/node-third-lib-dir-Lodash.png]the directory of Lodash

Now we write the script index.js to use functions provided by Lodash. More detailed contents are as follows:

#!/usr/bin/env node

const _ = require('lodash');

exports.handler = (event, context, callback) => {
 result = {}

 //remove repeating elements in array
 result["unique_array"] = _.uniq(event['array']);
 //sort
 result['sorted_users'] = _.sortBy(event['users'], function(o) { return o.age; });
 //filter
 result['filtered_users'] = _.filter(event['users'], function(o) { return !o.active; });

 callback(null, result);
}

The configuration of Node function runtime is as below:

The configuration of Node function runtime
functions:
 - name: 'sayhi'
 handler: 'index.handler'
 codedir: 'var/db/baetyl/function-sayhi'

First define the following json data as an input message:

{
 "array": ["Jane", 1, "Jane", 1, 2],
 "users": [
 { "user": "barney", "age": 36, "active": true },
 { "user": "fred", "age": 40, "active": false },
 { "user": "Jane", "age": 32, "active": true }
]
}

As above, after the localhub service receives the message sent to the topic node, it calls index.js script to execute the concrete logic to remove repeated elements, filter, sort of array in input data. The result is then fed back to the topic t/hi as an MQTT message. We subscribe to the topic t/hi via MQTTBox and we can observe the following message:

{
 "unique_array": ["Jane", 1, 2],
 "sorted_users": [
 { "user": "Jane", "age": 32, "active": true },
 { 'user': 'barney', "age": 36, "active": true },
 { "user": "fred", "age": 40, "active": false }
],
 "filtered_users": [
 { "user": "fred", "age": 40, "active": false }
],
}

[image: ../_images/write-node-script-third-lib-Lodash.png]using_lodash

Customize Runtime Module

The function runtime is the carrier of the function execution. The function is executed by dynamically loading the function code, which is strongly related to the language of the function implementation. For example, Python code needs to be called using the Python runtime. This is a multi-language issue. In order to unify the interface and protocol, we finally chose GRPC to create a flexible functional computing framework with its powerful cross-language IDL and high-performance RPC communication capabilities.

In the function compute service (FaaS), baetyl-function-manager is responsible for the management and invocation of function instances. The function instance is provided by the function runtime service, and the function runtime service only needs to meet the conventions described below.

Protocol Convention

Developers can use the function.proto in sdk/baetyl-go to generate messages and service implementations for their respective programming languages, as defined below. For the usage of GRPC, refer to GRPC Official Documents [https://grpc.io/docs/quickstart/go.html].

syntax = "proto3";

package baetyl;

// The function server definition.
service Function {
 rpc Call(FunctionMessage) returns (FunctionMessage) {}
 // rpc Talk(stream Message) returns (stream Message) {}
}

// FunctionMessage function message
message FunctionMessage {
 uint64 ID = 1;
 uint32 QOS = 2;
 string Topic = 3;
 bytes Payload = 4;

 string FunctionName = 11;
 string FunctionInvokeID = 12;
}

NOTE: In docker container mode, the resource limit of the function instance should not be lower than 50M memory and 20 threads.

Configuration Convention

The function runtime module does not enforce the configuration. However, for the unified configuration mode, the following configuration items are recommended.

	name: function name

	handler: function processing interface

	codedir: The path to the function code, if any.

The following is a configuration example of a Python function runtime service:

functions:
 - name: 'sayhi'
 handler: 'sayhi.handler'
 codedir: 'var/db/baetyl/function-sayhi'

Start/Stop Convention

The function runtime service is the same as other services, the only difference is that the instance is dynamically started by other services. For example, to avoid listening port conflicts, you can specify the port dynamically. The function runtime module can read BAETYL_SERVICE_INSTANCE_ADDRESS from the environment variable as the address that the GRPC Server listens on. In addition, dynamically launched function instances do not have permission to call the main program’s API. Finally, the module listens for the SIGTERM signal to gracefully exit. A complete implementation can be found in the Python2.7、Python3.6 runtime module (baetyl-function-python27、baetyl-function-python36).

Customize Module

Read Build Baetyl From Source before developing custom modules to understand Baetyl’s build environment requirements.

Custom modules do not limit the development language. Understand these conventions below to integrate custom modules better and faster.

The custom module does not limit the development language. As long as it is a runnable program, you can even use the image already on hub.docker.com, such as eclipse-mosquitto. But understanding the conventions described below will help you develop custom modules better and faster.

Directory Convention

At present, the native process mode, like the docker container mode, opens up a separate workspace for each service. Although it does not achieve the effect of isolation, it can guarantee the consistency of the user experience. The process mode creates a separate directory for each service in the var/run/baetyl/services directory, using service name. When the server starts, it specifies the directory as the working directory, and the service-bound storage volumes will be mapped (soft link) to the working directory. Here we keep the definition of the docker container mode, the workspace under the directory is also called the container, then the directory in the container has the following recommended usage:

	Default working directory in the container: /

	Default configuration file in the container: /etc/baetyl/service.yml

	Default persistence path in the container: /var/db/baetyl

	Default log directory in the container: /var/log/baetyl

NOTE: If the data needs to be persisted on the device (host), such as database and log, the directory in the container must be mapped to the host directory through the storage volume, otherwise the data will be lost after the service is stopped.

Start/Stop Convention

There is no excessive requirement for the module to be started. But it is recommended to load the YMAL format configuration from the default file, then run the module’s business logic, and finally listen to the SIGTERM signal to gracefully exit. A simple Golang module implementation can refer to the MQTT remote communication module (baetyl-remote-mqtt).

SDK

If the module is developed using Golang, you can use the SDK provided by Baetyl, located in the sdk directory of the project, and the functional interfaces are provided by Context. At present, the SDK capabilities provided are still not enough, and the follow-up will be gradually strengthened.

The list of Context interfaces are as follows:

// returns the system configuration of the service, such as hub and logger
Config() *ServiceConfig
// loads the custom configuration of the service
LoadConfig(interface{}) error
// creates a Client that connects to the Hub through system configuration,
// you can specify the Client ID and the topic information of the subscription.
NewHubClient(string, []mqtt.TopicInfo) (*mqtt.Dispatcher, error)
// returns logger interface
Log() logger.Logger
// check running mode
IsNative() bool
// waiting to exit, receiving SIGTERM and SIGINT signals
Wait()
// returns wait channel
WaitChan() <-chan os.Signal

// Master RESTful API

// updates system and
UpdateSystem(string, bool) error
// inspects system stats
InspectSystem() (*Inspect, error)
// gets an available port of the host
GetAvailablePort() (string, error)
// reports the stats of the instance of the service
ReportInstance(stats map[string]interface{}) error
// starts an instance of the service
StartInstance(serviceName, instanceName string, dynamicConfig map[string]string) error
// stop the instance of the service
StopInstance(serviceName, instanceName string) error

The following uses the simple timer module implementation as an example to introduce the usage of the SDK.

package main

import (
	"encoding/json"
	"time"

	"github.com/baetyl/baetyl/protocol/mqtt"
	baetyl "github.com/baetyl/baetyl/sdk/baetyl-go"
)

// custom configuration of the timer module
type config struct {
	Timer struct {
		Interval time.Duration `yaml:"interval" json:"interval" default:"1m"`
	} `yaml:"timer" json:"timer"`
	Publish mqtt.TopicInfo `yaml:"publish" json:"publish" default:"{\"topic\":\"timer\"}"`
}

func main() {
	// Running module in baetyl context
	baetyl.Run(func(ctx baetyl.Context) error {
		var cfg config
		// load custom config
		err := ctx.LoadConfig(&cfg)
		if err != nil {
			return err
		}
		// create a hub client
		cli, err := ctx.NewHubClient("", nil)
		if err != nil {
			return err
		}
		// start client to keep connection with hub
		cli.Start(nil)
		// create a timer
		ticker := time.NewTicker(cfg.Timer.Interval)
		defer ticker.Stop()
		for {
			select {
			case t := <-ticker.C:
				msg := map[string]int64{"time": t.Unix()}
				pld, _ := json.Marshal(msg)
				// send a message to hub triggered by timer
				err := cli.Publish(cfg.Publish, pld)
				if err != nil {
					// log error message
					ctx.Log().Errorf(err.Error())
				}
			case <-ctx.WaitChan():
				// wait until service is stopped
				return nil
			}
		}
	})
}

FAQ

This document mainly provides related issues and solutions for Baetyl deployment and startup in various platforms.

Q1: Prompt missing startup dependency configuration item when starting Baetyl in docker container mode.

[image: _images/docker-engine-conf-miss.png]Picture

Suggested Solution: As shown in the above picture, Baetyl startup lacks configuration dependency files, refer to GitHub-Baetyl [https://github.com/baetyl/baetyl] example folder(the location is etc/baetyl/conf.yml).

Q2: Execute the command docker info get the following result on Ubuntu/Debian: “WARNING: No swap limit support”

Suggested Solution:

	Open /etc/default/grub with your favorite text editor. Make sure the following lines are commented out or add them if they don’t exist:

GRUB_CMDLINE_LINUX=”cgroup_enable=memory swapaccount=1”

	Save and exit and then run: sudo update-grub and reboot.

NOTE: If you got some error when you execute step2, it may be that the grub setting is incorrect. Please repeat steps 1 and 2.

Q3: Found “WARNING: Your kernel does not support swap limit capabilities. Limitation discarded” when Baetyl start.

Suggested Solution: Refer to Q2.

Q4: Found “Got permission denied while trying to connect to the docker daemon socket at unix:///var/run/docker.sock: Get http://%2Fvar%2Frun%2Fdocker.sock/v1.38/images/json: dial unix /var/run/docker.sock: connect: permission denied” when Baetyl start.

Suggested Solution: Add the docker group if it doesn’t already exist:

sudo groupadd docker

Add the current user to the docker group:

sudo usermod -aG docker ${USER}
su - ${USER}

Q5: Found “Cannot connect to the docker daemon at unix:///var/run/docker.sock. Is the docker daemon running?” when Baetyl start.

Suggested Solution: If you still report this issue after the solution of Q4 solution is executed, restart the docker service.

For example, execute the following command on CentOS:

systemctl start docker

Q6: Found “failed to create master: Error response from daemon: client version 1.39 is too new. Maximum supported API version is 1.38” when Baetyl start.

Suggested Solution: Workaround is to pass API version via environment variable:

DOCKER_API_VERSION=1.38

For example:

sudo vim ~/.bash_profile
export DOCKER_API_VERSION=1.38
source ~/.bash_profile

Q7: How does Baetyl connect to NB-IOT network?

Suggested Solution: NB-IoT is a network standard similar to 2/3/4G with low bandwidth and low power consumption. NB-IoT supports TCP-based MQTT protocol, so you can use NB-IoT card to connect to Baidu Cloud IotHub, deploy Baetyl application and communicate with BIE [https://cloud.baidu.com/product/bie.html] Cloud Management Suite. However, among the three major operators in China, Telecom have imposed whitelist restrictions on their NB cards, and only allow to connect to Telecom Cloud service IP. Therefore, only Mobile NB cards and Unicom NB cards can be used to connect to Baidu Cloud service.

Q8: Does Baetyl support to push data to Kafka?

Suggested Solution: Support, you can refer to How to write a python script for python runtime, and subscribe messages from the local Hub module and writing them to Kafka service. Besides, you can also refer to How to develop a customize module for Baetyl, which subscribes message from the local Hub module and then writes it to Kafka.

Q9: What are the ways to change Baetyl configurations? Can I only make configuration changes through the BIE [https://cloud.baidu.com/product/bie.html] Cloud Management Suite?

Suggested Solution: Currently, we recommend changing configurations through the BIE Cloud Management Suite, but you can also manually change the configuration file on the core device and then restart Baetyl to take effect.

Q10：I download MQTTBox client, extract it to a directory, and copy/move the executable file MQTTBox to /usr/local/bin(other directory is similar, such as /usr/bin, /bin, /usr/sbin, etc.). But it reports an error of “error while loading shared libraries: libgconf-2.so.4: cannot open shared object file: No such file or directorywhenMQTTBox” start.

Suggested Solution：As above description, this is because the lack of libgconf-2.so.4 library when MQTTBox start, and the recommended use is as follows:

	Step 1: Download and extract the MQTTBox software package;

	Step 2: cd /pat/to/MQTTBox/directory and sudo chmod +x MQTTBox;

	Step 3：sudo ln -s /path/to/MQTTBox /usr/local/bin/MQTTBox;

	Step 4：Open terminal and execute the command MQTTBox.

Q11: localfunc can’t process the message, check funclog has the following error message:

level=error msg=”failed to create new client” dispatcher=mqtt error=”dial tcp 0.0.0.0:1883:connect:connection refused”

Suggested Solution: If you are using the BIE Cloud Management Suite to deliver the configuration, there are a few points to note:

	Cloud delivery configuration currently only supports container mode.

	If the configuration is sent in the cloud, the hub address configured in localfunc should be localhub instead of 0.0.0.0.

According to the above information, the actual error is judged, and the configuration is delivered from the cloud as needed, or by referring to Configuration Analysis Document for verification and configuration.

Q12： How can i use BIE Cloud Management Suite with CFC(Cloud Function Compute) [https://cloud.baidu.com/product/cfc.html]?

Suggested Solution:

	Make sure your BIE configuration and CFC functions in the same region, such as beijing/guangzhou.

	Make sure your CFC functions are published.

	Select CFC function template when volume create, more detailed contents please refer to How-to-apply-volume-in-the-right-way [https://cloud.baidu.com/doc/BIE/s/Cjzdn8xig]

Q13： What‘s the relationship between the parameter ports and the parameter listen which in the hub configuration file?

Suggested Solution:

	ports: Port exposed configuration in docker container mode.

	listen: Which address the hub module will listen on. In docker container mode, it’s means container address. In native process mode, it’s means host address.

	By referring to Configuration Analysis Document

Q14: How to process data in the cloud platform after message send to Baidu IoT Hub [https://cloud.baidu.com/product/iot.html] by Baetyl?

Suggested Solution:
In the cloud platform, the Rule Engine [https://cloud.baidu.com/product/re.html] can be used to transmit data to other cloud services, such as CFC(Cloud Function Compute) [https://cloud.baidu.com/product/cfc.html], TSDB [https://cloud.baidu.com/product/tsdb.html].

Q15: How to connect the Device management [https://cloud.baidu.com/doc/IOT/GettingStarted.html#.E5.88.9B.E5.BB.BA.E7.89.A9.E6.A8.A1.E5.9E.8B] of Baidu IoT Hub?

Suggested Solution:
The Device management of Baidu IoT Hub does not support ssl authentication. As a temporary solution, you can configure Remote Feature to connect the Device management with username and password authentication manually.

Q16：If I don’t want to lose messages and want to ensure all messages are synchronized to cloud, how can I do?

Suggested Solution:

You must meet the following 2 conditions:

	To make sure messages will be persist in local disk which are sent to local hub, the topic’s QoS must be set to 1.

	To make sure messages will be sent to cloud successful, the QoS of rules configuration of Remote module must be set to 1, which includes remote sub’s QoS and the pub’s QoS. By referring to Configuration Analysis Document

Q17: After the configuration is sent from the cloud to the edge, the default startup mode is docker container mode. After modifying mode: native in etc/baetyl/conf.yml the startup error is similar to the following: “failed to update system: open /Users/ Xxx/baetyl_native/var/run/baetyl/services/agent/lib/baetyl/hub.baidubce.com/baetyl/baetyl-agent:latest/package.yml: no such file or directory”.

Suggested Solution: At present, our cloud management does not support the process mode. If you need to start Baetyl in process mode locally, please refer to the configuration content in example/native and execute the command make install-native. Install and start by process with the command sudo baetyl start.

Q18: There is a similar error when downloading the image: “error=”Error response from daemon: Get https://hub.baidubce.com/v2/: x509: failed to load system roots and no roots provided” baetyl= Master”.

Suggested Solution: This is because the ca-certificates package is missing from the system and can be installed to solve this problem.
For example, if the host system is Debian, you can use the following command to install it:

sudo apt-get update
sudo apt-get install ca-certificates

For other systems, please check the relevant installation operations yourself.

Download

Golang download

Official website：https://golang.org/dl/

Golang download link of BOS(Baidu-Object-Storage [https://cloud.baidu.com/product/bos.html])：

	OS
	CPU
	SHA256
	Download link

	Linux
	386
	c40824a3e6c948b8ecad8fe9095b620c488b3d8d6694bdd48084a4798db4799a
	Download

	Linux
	amd64
	ac2a6efcc1f5ec8bdc0db0a988bb1d301d64b6d61b7e8d9e42f662fbb75a2b9b
	Download

	Linux
	armv6l
	0d9be0efa9cd296d6f8ab47de45356ba45cb82102bc5df2614f7af52e3fb5842
	Download

	Linux
	arm64
	3606dc6ce8b4a5faad81d7365714a86b3162df041a32f44568418c9efbd7f646
	Download

	Windows(msi)
	386
	ba5b57d3752d45953e8f616f2371f65ef4c953cf8c6e2e0e64d6a1496df3ab08
	Download

	Windows(zip)
	386
	96e54c9801973a255417d9827d470fd0fae14ad8c9274577012c01f97cd534dd
	Download

	Windows(msi)
	amd64
	da2fc362c7afcab611709ef56e1bb145c92dfaf361cafdd75634ac8172ded245
	Download

	Windows(zip)
	amd64
	ec7550b32ff080b17060b9d4fde7bee94d9cf3c42e846e3a62fe4a3047ec79e3
	Download

	Darwin(pkg)
	amd64
	4f5478e6d985f4f68099e03f4485149efa697cf81610e514974291a29ee7e21b
	Download

	Darwin(src)
	amd64
	4f189102b15de0be1852d03a764acb7ac5ea2c67672a6ad3a340bd18d0e04bb4
	Download

	Source
	-
	ab0e56ed9c4732a653ed22e232652709afbf573e710f56a07f7fdeca578d62fc
	Download

MQTT download

MQTT client sample

C sample of MQTT client：C-sample-of-MQTT-client [https://baetyl.cdn.bcebos.com/mqtt-example/MQTT-c-example.tar.gz]

Python sample of MQTT client：Python-sample-of-MQTT-client [https://baetyl.cdn.bcebos.com/mqtt-example/MQTT-python-example.tar.gz]

MQTT.fx download

Official website：http://www.jensd.de/apps/mqttfx/1.7.1/

MQTT.fx download link of BOS：

	OS
	CPU
	SHA256
	Download link

	Linux(rpm)
	x86
	b3301ef2f1abad4e8298766f43060e5ce9906099da096c4e0b601485dcca849d
	Download

	Linux(rpm)
	x86_64
	f665a6a97ff5ecd77ceb713a38c0aa2bb1af281a3ebe647d06579d1489845d6a
	Download

	Linux(deb)
	x86
	252ae7bfb621eebfcab2d47c500896b44d6f23ce82c33e0217ac43a4c735acfa
	Download

	Linux(deb)
	x86_64
	6fb14c739cbf8b54a373a0c5c173ef3657c01c675374ded8f0a292c610e549c2
	Download

	Windows(exe)
	x86
	aa3902a2b76e427c4ba90b2b49dd337e95e614ba59f8cd64b5a95b5080766965
	Download

	Windows(exe)
	x86_64
	4adfbb0eee65273bead6ce9885cf064de72d00d437bbaf3b9ff5236634fb6057
	Download

	Darwin(dmg)
	x86_64
	544b6ac0afefb80b5a56c2a6f2411f999862fb8f0f20502c912f28a9d1aa3b4a
	Download

MQTTBox download

Official website：http://workswithweb.com/html/mqttbox/downloads.html

MQTTBox download link of BOS：

	OS
	SHA256
	Download link

	Linux(deb)
	15ff821634d7c2dbef3cbc3e7252bc86e3890a2c3c094842405cb442902d467d
	Download

	Linux(tar.gz)
	0ea0566f40fdf544510090441faaba745816ad1d438f3efe72197eb630f0e1f7
	Download

	Darwin(mac-dmg)
	5ebd95c8bd29bea5974f2e38662d0b85cc2d0015fd4bbcdc777ffa3fe09d1c94
	Download

	Darwin(mac-zip)
	dda9549dbf35e6ad2dfbdb640020a0153ab62d6b27fbbe86da9ef0a8b997b4b9
	Download

	Windows(win-exe)
	86ab9beb3e1241119f8a4e36550da755fead40be84a91eff3c0eb96ce4e4621e
	Download

Paho MQTT Client SDK

Official website: http://www.eclipse.org/paho

Paho MQTT Client Comparison

	Client
	MQTT 3.1
	MQTT 3.1.1
	MQTT 5.0
	LWT
	SSL/TLS
	Automatic Reconnect
	Offline Buffering
	Message Persistence
	WebSocket Support
	Standard MQTT Support
	Blocking API
	Non-Blocking API
	High Availability

	Java
	√
	√
	╳
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	Python
	√
	√
	╳
	√
	√
	√
	√
	╳
	√
	√
	√
	√
	╳

	JavaScript
	√
	√
	╳
	√
	√
	√
	√
	√
	√
	╳
	╳
	√
	√

	GoLang
	√
	√
	╳
	√
	√
	√
	√
	√
	√
	√
	╳
	√
	√

	C
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	C++
	√
	√
	╳
	√
	√
	√
	√
	√
	╳
	√
	√
	√
	√

	Rust
	√
	√
	╳
	√
	√
	√
	√
	√
	╳
	√
	√
	√
	√

	.Net (C#)
	√
	√
	╳
	√
	√
	╳
	╳
	╳
	╳
	√
	╳
	√
	╳

	Android Service
	√
	√
	╳
	√
	√
	√
	√
	√
	√
	√
	╳
	√
	√

	Embedded C/C++
	√
	√
	╳
	√
	√
	╳
	╳
	╳
	╳
	√
	√
	√
	╳

Index

TO DO

 _static/comment-bright.png

_images/write-python-script-third-lib-requests.png
SMenu ¢

connect-test - mqtt://127.

® Add publisher

Box

@ Add subscriber g

Topic to publish
Py
Qos
0- Aimost Once
Retain

Payload Type
Strings / JSON / XML / Characters
e.g: {'hello'world')

Payload

{"action™: "A"}

topic:py, qos:0, retainfalse
3§
{"action”: "A"}

tonics -0_ratain:falea

x

{"action": *A", “info": {*Cache-Control': "private, no-ca
che, no-store, proxy-revalidate, no-transform", "Conne
ction": *Keep-Alive", *Content-Encoding": “gzip", *Con
tent-Type": "text/html", "Date": "Mon, 23 Sep 2019 14:
06:15 GMT", "Last-Modified": "Mon, 23 Jan 2017 13:2

7:36 GMT", "Pragma": "no-cache", "Server": "bfe/1.0.
8.18", "Set-Cookie": "BDORZ=27315; max-age=8640

0; domain=.baidu.com; patt
“chunked"}}

", "Transfer-Encoding":

qos : 0, retain : false, cmd : publish, dup : false, topic : py/hi,
messageld : , length : 439, Raw payload : 1233497991161051111
10345832346534443234105110102111345632123346797991
04101456711111011611411110834583234112114105118971
161014432110111459997991041014432110111451151161111141
01443211211411112012145114101118971081051009711610
14432110111451161149711011510211111410934443234671
11110110101991161051111103458323475101101112456510
810511810134443234671111101161011101164569110991111001
051101033458323410312210511234443234671111101161011101
16458412111210134583234116101120116471041161091083
44432346897116101345632347711111044325051328310111
23250484957324952584854584953327 177843444323476971
151164577111100105102105101100345832347711111044325051
3274971103250484955324951585055585154327 1778434443
234A01149710310997345A32341101114599979910410134443234)

_static/ajax-loader.gif

_images/docker-ps-after-remote-start.png
- baetyl-demo docker ps

CONTAINER ID IMAGE
NAMES
8bc6410e943d T il f
remote-mqtt
9fd900c43a89 u = - =

, 0.0.0.0:8883->8883/tcp localhub

‘baetyl-remote-mqtt:0.1.6

= /baetyl-hub:0.1.6

COMMAND
"baetyl-remote-mqtt"

"baetyl-hub"

CREATED
12 minutes ago

12 minutes ago

STATUS
Up 12 minutes

Up 12 minutes

PORTS

0.0.0.0:1883->1883/tcp

_static/down-pressed.png

_images/docker-ps-after-trigger.png
baetyl@baetyl: /usr/local/var$ docker ps
CONTAINER ID IMAGE
NAMES
7410649788db
function-python36-sayhi.python36-sayhi.3
56073223ab5a
function-python27-sayhi.python27-sayhi.3
5d64cle@2c24
function-node85-sayhi.node85-sayhi.3
925ab2b2bdda
function-sql-filter.sql-filter.1

db939cbScdfc hub .baidubce.com/baetyl/baetyl-function-manager
function-manager
52baddd7alcf hub.baidubce.com/baetyl/baetyl-hub

localhub

hub.baidubce.com/baetyl/baetyl-function-python36
hub .baidubce.com/baetyl/baetyl-function-python27
hub .baidubce.com/baetyl/baetyl-function-node85

hub.baidubce.com/baetyl/baetyl-function-sql

COMMAND
"function-python36.py"
"function-python27.py"
"function-node85. js"
"baetyl-function-sql"
"baetyl-function-man.."

"baetyl-hub"

CREATED

8 seconds ago
8 seconds ago
8 seconds ago
14 minutes ago
32 minutes ago

32 minutes ago

NS PORTS
Up 4 seconds
Up 3 seconds
Up 4 seconds
Up 14 minutes
Up 32 minutes

Up 32 minutes 0.0.0.0:1883->1883/tcp

_static/down.png

_images/docker-install-on-mac.png
= Docker

&y

Docker.app

@AG & DRop

-~ >

Applications

_static/comment-close.png

_images/docker-path-mount-on-mac.png
File Sharing

™ NORECERSNN TR ©)

General File Sharing Disk Advanced Proxies Daemon Kubernetes Reset

These macOS directories (and their subdirectories) can be bind mounted
into Docker containers. These exported directories cannot overlap.
You can check the documentation for more details.

[Users
/NVolumes
[private
/tmp

Jusr/local/var

+_

@ Docker Desktop is running

_static/comment.png

_images/docker-stats.png
CONTAINER ID
10131874143
1755107212
781838b42c4b
0618c0c49e45
2a29e8e17192
e8c36ald92aa
23b8aa709fee

NAME
function-nodess-sayhi.node85-sayhi.1
function-sql-filter.sql-filter.1
function-python36-sayhi.python3é-sayhi.1
function-python27-sayhi.python27-sayhi.1
timer

function-manager

localhub

CPU %
0.00%
0.00%
0.09%
0.09%
0.00%
0.00%
13.05%

MEM USAGE / LIMIT

0B
0B
0B
0B
0B
0B
0B

0B
0B
0B
0B
0B
0B
0B

MEM %
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%

NET I/0

72.5kB / 58.7kB
75.8kB / 43.1kB
72.5kB / 68.6kB
72.1kB / 60.4KB
29KkB / 13kB
321kB / 335kB
153kB / 87.6kB

BLOCK I/0

o8B / 0B
2.23M8 / @B
28.7kB / @B
1.72M8 / @B
135kB / @B
922kB / @B
229kB / 156kB

coccoceT

1Ds

_images/function-start-log.png
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:
time="2019-09-23T21:

49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
49:
50:

08+08:
08+08:
08+08:
08+08:
08+08:
09+08:
09+08:
09+08:
09+08:
09+08:
09+08:
09+08:
09+08:
11+08:
11+08:
11+08:
11+08:
11+08:
14+08:
14+08:
14+08:
14+08:
14+08:
14+08:
14+08:
14+08:
14+08:
14+08:
14+08:
14+08:
14+08:
11+08:

00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"
00"

level=info msg="mode: docker; grace: 30000000000; pwd: /usr/local; api: unix:///var/run/baetyl.sock" baetyl=master
level=info msg="engine started" baetyl=master

level=error msg="no such file or directory" api=server baetyl=master

level=info msg="server started" baetyl=master

level=debug msg="network (4c71ld7leeab3:baetyl) exists" baetyl=master engine=docker

level=debug msg="image Chub.baidubce.com/baetyl/baetyl-function-python36) pulled" baetyl=master engine=docker
level=debug msg="image Chub.baidubce.com/baetyl/baetyl-function-manager) pulled" baetyl=master engine=docker
level=debug msg="image (Chub.baidubce.com/baetyl/baetyl-function-node85) pulled" baetyl=master engine=docker
level=debug msg="image (Chub.baidubce.com/baetyl/baetyl-function-sql) pulled" baetyl=master engine=docker
level=debug msg_"image (Chub.baidubce.com/baetyl/baetyl-function-python27) pulled" baetyl=master engine=docker
level=debug msg="image Chub.baidubce.com/baetyl/baetyl-hub) pulled" baetyl=master engine=docker

level=debug msg="localhub replica: 1" baetyl=master engine=docker service=localhub

level=debug msg="instance (localhub) not found" baetyl=master engine=docker service=localhub

level=debug msg="container (52baddd7alcf:localhub) started" baetyl=master engine=docker

level=info msg="instance started" baetyl=master cid=52baddd7alcf engine=docker instance=localhub service=localhub
level=info msg="service (localhub) started" baetyl=master

level=debug msg="function-manager replica: 1" baetyl=master engine=docker service=function-manager

level=debug msg="instance (function-manager) not found" baetyl=master engine=docker service=function-manager
level=debug msg="container (db939cb5cdfc:function-manager) started" baetyl=master engine=docker

level=info msg="instance started" baetyl=master cid=db939cb5cdfc engine=docker instance=function-manager service=function-manager
level=info msg="service (function-manager) started" baetyl=master

level=debug msg="function-python27-sayhi replica: 0" baetyl=master engine=docker service=function-python27-sayhi
level=info msg="service (function-python27-sayhi) started" baetyl=master

level=debug msg="function-python36-sayhi replica: 0" baetyl=master engine=docker service=function-python36-sayhi
level=info msg="service (function-python36-sayhi) started" baetyl=master

level=debug msg="function-node85-sayhi replica: 0" baetyl=master engine=docker service=function-node85-sayhi
level=info msg="service (function-node85-sayhi) started" baetyl=master

level=debug msg="function-sql-filter replica: @" baetyl=master engine=docker service=function-sql-filter
level=info msg="service (function-sql-filter) started" baetyl=master

level=info msg="app version (v@) committed" baetyl=master

level=info msg="services started" baetyl=master

level=info msg="[PUT] /v1/services/localhub/instances/localhub/report" api=server baetyl=master

_images/docker-ps.png
baetyl@baetyl:~$ docker ps
CONTAINER ID IMAGE COMMAND CREATED NS PORTS

NAMES
bc82f4aded9%e hub.baidubce.com/baetyl/baetyl-hub:latest "baetyl-hub" 6 minutes ago Up 6 minutes 0.0.0.0:1883->1883/tcp, 0.0.0.0:8080->8080

/tcp, 0.0.0.0:8883->8883/tcp localhub

_images/docker-ps1.png
baetyl@baetyl: /usr/local/var$ docker ps

CONTAINER ID IMAGE COMMAND CREATED NS PORTS
NAMES
db939cbScdfc hub.baidubce.com/baetyl/baetyl-function-manager "baetyl-function-man.." 4 minutes ago Up 4 minutes
function-manager
52baddd7alcf hub.baidubce.com/baetyl/baetyl-hub "baetyl-hub" 4 minutes ago Up 4 minutes 0.0.0.0:1883->1883/tcp

localhub

_static/file.png

_images/logo-with-name.png
Baetyl

_images/master-start-log.png
R e R

baetyl@baetyl ~$ tall -f /usr/local/var/log/baetyl/baetyl log

time="2019-09-23T17:55:39+08:00" level=debug msg="instance (localhub) not found" baetyl=master engine=docker service=localhub
time="2019-09-23T17:55:42+08:00" level=debug msg="container (bc82f4ade99e:localhub) started" baetyl=master engine=docker
time="2019-09-23T17:55:42+08:00" level=info msg="instance started" baetyl=master cid=bc82f4ade99%e engine=docker instance=localhub service=localhub
time="2019-09-23T17:55:42+08:00" level=info msg="service (localhub) started" baetyl=master

time="2019-09-23T17:55:42+08:00" level=info msg="app version (v@) committed" baetyl=master

time="2019-09-23T17:55:42+08:00" level=info msg="services started" baetyl=master

time="2019-09-23T17:56:42+08:00" level=info msg="[PUT] /v1/services/localhub/instances/localhub/report" api=server baetyl=master
time="2019-09-23T17:56:42+08:00" level=info msg="[PUT] /v1/services/localhub/instances/localhub/report" api=server baetyl=master
time="2019-09-23T17:57:42+08:00" level=info msg="[PUT] /v1/services/localhub/instances/localhub/report" api=server baetyl=master
time="2019-09-23T17:57:42+08:00" level=info msg="[PUT] /v1/services/localhub/instances/localhub/report" api=server baetyl=master

_images/design_overview.png
(A

Master

ins;')ect
update
start/stop

-
——

Baetyl Master

process

Baetyl Services
docker: container
native: process

RESTful
API
)

g Servers or Clients
out of Baetyl

docker: custom network ‘baetyl’
native: host network ‘localhost’

inspect

update

instance
start/stop

Function

sQL

5] Agent report/forward————> Cloud Management
desire/backward Suite
(N
Baidu)
matt > loTHub L] AWS
.) loTHub
maqtt i
v) E—
MQTT ()
mqtt ——————>| i
_______ Client A MQTT
> MQTTHub ____ J7| clientB
| e
mqtt¢ L
v mqtt
Function 1
SEER T P Remote o GRPC
¥ GRPC . Server
grpc I R E—
gffc
Function (Y
Python36 | . 25\/*’6? GRPC
Python36 Client B
—

_images/design_remote_mqtt.png
[
Client 1

———

[
Client 2

———

[
Client 3

Hub

Remote
MQTT

———

loTHub

——

[
Client A

———

[
Client B

———

[
Client C

———

_images/design_app_ota.png
start)
v

rename
application.yml
to application.yml.old

)4

success?

no

yes

copy new config
from app volume
to application.yml

v

success?

p no

yes
v

find unchanged services
and prepare all new
services

v

stop old services except
unchanged services

v

start new services
except unchanged

services
no
yes
v
rename remove rename

application.yml.old
back to application.yml

application.yml.old
and commit new version

application.yml.old

back to application.yml

yes

stop new services
except unchanged
services

v
start old services
except unchanged
services

_images/design_function.png
Master

=4

start/stop

<---

Hub

- - start/stop -1 instance

pool

L]

Function Manager matt

l

invoke —| rule
engine

Function A
Instance 1

Function B
Instance 1

Function A
Instance 2

_images/docker-engine-conf-miss.png
=-» baetyl-demo sudo bin/baetyl start

2019/09/19 11:43:20config file (etc/baetyl/conf.yml) not found, to use default config

_images/mqttbox-pub-t1-success.png
= Menu L all Connected ® Add publisher ® Add subscriber o]
edgeclient - mqtt://127.0.0.1
x
Topic to publish X 2
t1
This message is from MQTT.fx.
QoS

0 - Aimost Once

Retain ()

Payload Type

Strings / JSON / XML / Characters

e.g: {'hello":'world'}

Payload

<

<

This message is from MQTTBOX.

Publish

This message is from MQTTBOX.

topic:t1, qos:0, retain:false
3

qos : 0, retain : false, cmd : publish, dup : false, topic
: 12, messageld : , length : 33, Raw payload : 841041
05115321091011151159710310132105115321021141
1110932778184844610212046

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to BAETYL’s documentation!

 		
 What is Baetyl

 		
 Advantages

 		
 Components

 		
 Architecture

 		
 Installation

 		
 Development

 		
 Contributing

 		
 Contact us

 		
 Baetyl Design

 		
 Concepts

 		
 Components

 		
 Master

 		
 Engine

 		
 RESTful API

 		
 Environment Variable

 		
 Official Modules

 		
 baetyl-agent

 		
 baetyl-hub

 		
 baetyl-function-manager

 		
 baetyl-function-python27

 		
 baetyl-function-python36

 		
 baetyl-function-node85

 		
 baetyl-remote-mqtt

 		
 Contributing

 		
 Workflow

 		
 Code Review

 		
 Merge Rule

 		
 Quick Install Baetyl

 		
 Install the container runtime

 		
 Install Baetyl

 		
 Import the example configuration (optional)

 		
 Start Baetyl

 		
 Verify successful installation

 		
 Build Baetyl From Source

 		
 Environment Configuration

 		
 Linux Platform

 		
 Darwin Platform

 		
 Source Code Compilation

 		
 Download Source Code

 		
 Build Docker Image

 		
 Compile

 		
 Install

 		
 Run

 		
 Uninstall

 		
 Baetyl Configuration Interpretation

 		
 Master Configuration

 		
 Application Configuration

 		
 baetyl-agent Configuration

 		
 baetyl-hub Configuration

 		
 baetyl-function-manager Configuration

 		
 baetyl-function-python Configuration

 		
 baetyl-remote-mqtt Configuration

 		
 baetyl-timer Configuration

 		
 Device connect to Baetyl with Hub service

 		
 Workflow

 		
 Connection Test

 		
 Baetyl Application Configuration

 		
 Baetyl Startup

 		
 Message transferring among devices with Local Hub Service

 		
 Workflow

 		
 Message Routing Test

 		
 Message Transfer Test Among Devices

 		
 Message handling with Local Function Service

 		
 Workflow

 		
 Message Handling Test

 		
 Baetyl Start

 		
 MQTTBox Establish Connection

 		
 Message Handling Check

 		
 Message Synchronize between Baetyl-Hub and Baidu IoTHub via Baetyl-Remote-MQTT module

 		
 Workflow

 		
 Message Synchronize via Baetyl-Remote-MQTT module

 		
 Establish a Connection between MQTT.fx and Baidu IoTHub

 		
 Establish a Connection between MQTTBox and the Baetyl-Hub module

 		
 Message Synchronize Test

 		
 How to write a python script for Python runtime

 		
 Function Name Convention

 		
 Parameter Convention

 		
 Hello World

 		
 How to write a javascript for Node runtime

 		
 Function Name Convention

 		
 Parameter Convention

 		
 Hello World

 		
 How to import third-party libraries for Python runtime

 		
 Import requests third-party libraries

 		
 Import Pytorch third-party libraries

 		
 How to import third-party libraries for Node runtime

 		
 Import Lodash third-party libraries

 		
 Customize Runtime Module

 		
 Protocol Convention

 		
 Configuration Convention

 		
 Start/Stop Convention

 		
 Customize Module

 		
 Directory Convention

 		
 Start/Stop Convention

 		
 SDK

 		
 FAQ

 		
 Download

 		
 Golang download

 		
 MQTT download

 		
 MQTT client sample

 		
 MQTT.fx download

 		
 MQTTBox download

 		
 Paho MQTT Client SDK

_static/minus.png

_static/plus.png

_images/mqttbox-ssl-connect-config2.png
Edit Connection Profiles

Profile Name | edge_core_ss|_groupid

Broker Address | 127.0.0.1

Broker Port | 8883

Client ID | 525fed7c83ef4b058b4fead813b52afb Generate
General User Credentials | -<15A153| Proxy Last Will and Testament
Enable SSL/TLS v/ Protocol TLSv1.2 v

CA signed server certificate

CA certificate file

CA certificate keystore
@ |Self signed certificates

CAFile | /Users/dongxuanchen/Downloads/dxc_client_pem-LATEST/ca.

Client Certificate File | /Users/dongxuanchen/Downloads/dxc_client_pem-LATEST/clie

Client Key File | /Users/dongxuanchen/Downloads/dxc_client_pem-LATEST/clie

Client Key Password

PEM Formatted v/

Self signed certificates in keystores

Revert MQTT.fx OK Apply

_images/cloud-iothub-config.png
O BEEES Q «&E-IM Q 12 e omexm cwaAR WS @

+ tiEnE KO) Q

00 RIMBERELE

T8 &FR/Endpoint 5] Ei::p ik BIERATIE) BRIE
EE 9N
REE 2 2018-12-13 14:44:43 REsit
wi
PASEIIES
e — HiEEY 2 ssll~oum 4 2018-12-28 17:24:04 REsit
)RR 43
=
! HiEE 2 5 2019-09-23 01:37:59 kR | AESKI
v
LRIE)
" n
iR 2 2019-09-22 21:57:06 Hips | AES5IT
43
= 3
HiEEY 2 - w2 2019-09-21 22:35:34 Hipx BAE45T

tep://guqgsr9.mqtt.iot.gz.baidubce.com: 1883
HETY ssl://guqgsr9.mqtt.iot.gz.baidubce.com: 1884 2019-09-18 19:57:49 B | BESit
wss://guqgsr9.mqtt.iot.gz.baidubce.com:443

baetyl_demo

guqgsr9

‘883
384 2019-09-11 00:38:22 kR | AESKI
quaio 443

. iR

IS

u Feedback

_images/mqttbox-ssl-connect-success.png
[JOX) @ MQTT.fx - 1.5.1

File Extras Help
E v 'ﬂ m Disconnect ﬂ .
Publish Scripts Broker Status Log

test . @D as1 as: v

_images/mqttbox-receive-t2-message-success.png
000 MQTTBox

= Menu L all Connected ® Add publisher ® Add subscriber o]

localhub-client — mqtt://127.0.0.1:1883

x
Topic to publish X 2
t1
This message is from MQTT.fx.
QoS

qos : 0, retain : false, cmd : publish, dup : false, topic : t2, me
ssageld : , length : 33, Raw payload :
84104105115321091011151159710310132105115321021141
1110932778184844610212046

0 - Aimost Once

<

Retain ()

Payload Type

Strings / JSON / XML / Characters

<

e.g: {'hello":'world'}
Payload

This message is from MQTTBOX.

Publish

This message is from MQTTBOX.
topic:t1, qos:0, retain:false
5 ~

This message is from MQTTBOX.

tonic:t1 _ane:N ratain:-falea

_static/up.png

_images/mqttbox-ssl-connect-config1.png
e e
172.18.7.130

aws_device_client
bridge_client

dm
edge_10.99.206.143_dxc

edge_core_tcp
edge_core_ws
edge_core_wss
hub_cert111111
hub_cert_sand
hub_sand
hub_sand_dxc
hub_sand_dxc_1
hub_sand_zhaomeng
hub_ssl|

iotedge
iotedge-localhost-test

ga_dm

Edit Connection Profiles

Profile Name

Broker Address
Broker Port

Client ID

General

User Name

Password

edge_core_ssl_groupid

127.0.0.1

8883

525fed7c83ef4b058b4fead813b52afb Generate
SSL/TLS Proxy Last Will and Testament
two-way-tls

_images/mqttbox-tcp-connect-success.png
[JOX) @ MQTT.fx - 1.5.1

File Extras Help

A
. edge_core_tcp v # Disconnect ‘1.

Publish Scripts Broker Status Log

test 0 sxcre | CD o1 o: QD

Topics Collector (0) Scan = Stop wv

Payload decoded by v

_images/mqttbox-tcp-process-success.png
= Menu « all Connected ® Add publisher

demo-modbus - mqtt://192.168.0.102:1883

MQTTBox

® Add subscriber o]

Topic to publish

t

QoS

0 - Aimost Once

Retain ()

Payload Type

Strings / JSON / XML / Characters
e.g: {'hello":'world'}
Payload

{"id":1}

Publish

{"id":1}
topic:t, qos:0, retain:false
3

{"id":1}

tonictt _anc:N ratain:falea

%

<

<

{"id":1,"messageQ0S":0,"messageTopi
c":"t","messageTimestamp":1569248128,"fun
ctionName":"node85-sayhi","functionlnvokel
D":"d2ff02f9-2f7a-4cfb-879c-bd4a70b6163
8","Say":"Hello Baetyl"}

{"messageTopic": "t", "functionName": "pytho
n27-sayhi", "functioninvokelD": "5749b6b7-3
34b-40d8-9272-12880aea21b3", "messageTi
mestamp": 1569248128, "messageQOS": 0,
"Say": "Hello Baetyl", "id": 1}

{"id": 1, "messageQOS": 0, "messageTopic":
"t", "messageTimestamp": 1569248128, "fun
ctionName": "python36-sayhi", "functionlnvo
kelD": "5d7e9c7d-1a9c-4eeb-81de-acfecadef
b82", "Say": "Hello Baetyl"}

{"id":1 ,"qOS":O,"tOpiC":"t"}

JUIPRLIERY

_images/mqttbox-sub-t2-success.png
= Menu « all Connected ® Add publisher @© Add subscriber o]

edgeclient - mqtt://127.0.0.1

Topic to publish [*

t1

QoS

Al

0 - Aimost Once

Retain [

Payload Type

Strings / JSON / XML / Characters

<«

e.g: {'hello":'world'}

Payload

_images/mqttbox-tcp-connect-config.png
Edit Connection Profiles

Profile Name | edge_core_tcp

Broker Address | 127.0.0.1

Broker Port | 1883

ClientID | e0f7a5d3267f4656bccebb1a43119b3b Generate

General [LIESHeCCERIEISE SSL/TLS Proxy Last Will and Testament

User Name | test

Password | eeeeee

Revert OK Apply

_images/mqttbox-tcp-trans-message-success.png
= Menu « all Connected ® Add publisher

demo-modbus - mqtt://192.168.0.102:1883

MQTTBox

® Add subscriber o]

Topic to publish

t

QoS

0 - Aimost Once

Retain [

Payload Type

Strings / JSON / XML / Characters
e.g: {'hello":'world'}
Payload

This is a new message.

Publish

This is a new message.
topic:t, qos:0, retain:false
5 ~

{"id":1}

tonictt _anc:N ratain:falea

%

<

<

This is a new message.

qos : 0, retain : false, cmd : publish, dup : false, to

pic : t, messageld : , length : 25, Raw payload :
841041051153210511532973211010111932109101115
1159710310146

This is a new message.

qos : 0, retain : false, cmd : publish, dup : false, to

pic : t/topic, messageld : , length : 31, Raw payloa
d:8410410511532105115329732110101119321091011
151159710310146

_static/logo-with-name-ww.png
Bactyl

_images/mqttbox-ws-connect-config.png
00 MQTTBox

= Menu 4 MQTT CLIENT SETTINGS

MQTT Client Name MQTT Client Id
openedge-connect-test ac8595fc-8dcd-44eb-ae85-29¢c58z)
Protocol Host
Username Password
Reconnect Period (milliseconds) Connect Timeout (milliseconds)
1000 30000
Will - Topic Will - QoS
Will - Topic 0 - Almost Once :

Append timestamp to MQTT client id?

Yes

Clean Session?

Yes

Reschedule Pings?
Yes

KeepAlive (seconds)

10

Will - Retain

No

Delete

O Client Settings Help

Broker is MQTT v3.1.1 compliant?

Yes

Auto connect on app launch?

Yes

Queue outgoing QoS zero messages?

Yes

Will - Payload

_images/mqttbox-ws-connect-success.png
000 MQTTBox

= Menu - all Connected ® Add publisher ® Add subscriber te]

lopenedge—connect-test — ws:

Topic to publish

t1

QoS

0 - Aimost Once

<«

Retain [

Payload Type

Strings / JSON / XML / Characters

<«

e.g: {'hello":'world'}
Payload

{"id":10}

Publish

_images/mqttfx-pub-t2-success.png
File Extras Help

E

v ¢ nnect Disconnect

m Subscribe Scripts Broker Status Log

»

t2

]

QoS 2

Retained

W

This message is from MQTT.fo

_images/mqttfx-receive-t1-message-success.png
‘ Disconnect n.
Publish [T/ Scripts Broker Status Log

u - =D =

il
Dump Messages Mute Unsubscribe 0510
t1
Topics Collector (0) Scan W 1
23-09-2019 23:29:44.84584803 QoS0

This message is from MQTTBOX.

Payload decoded by Plain Text Decoder v

_images/mqttfx-connect-hub-config.png
[JOX)

M2M Eclipse
baetyl-iothub-test
baetyl-localhub-test
iothub

iothub-teste
jianli-test
localhub-test
rscu-iothub-test
shadow-devicel

zhixin-test

Edit Connection Profiles

Profile Name | baetyl-iothub-test

Profile Type MQTT Broker v EN

MQTT Broker Profile Settings

Broker Address || guqgsr9.mqtt.iot.gz.baidubce.com

YO

Broker Port | 1884

ClientID | ¢7323d5725684500a6ec7de629457bd8 Generate

General User Credentials [R5 5AIESY Proxy LWT

Enable SSL/TLS V' Protocol TLSv1.2 v

CA signed server certificate
CA certificate file
CA certificate keystore

@ Self signed certificates

CAFile] /Userd mmm mu mw Wmwnloads/baetyl-remote-iothub-cert-L
Client Certificate File] /Userd "l "™ WM Bownloads/baetyl-remote-iothub-cert-L

Client Key File| /Userf W& B WE nownloads/baetyl-remote-iothub-cert-L.

Client Key Password
PEM Formatted v/

Self signed certificates in keystores

Revert OK Apply

_images/mqttfx-connect-success.png
[JOX] @& MQTT.fx - 1.7.1

s 2 .
B ottt 0T e |

Publish Scripts Broker Status Log

a - @D as1 as: %

e (D

Topics Collector (0) Scan | Stop wv

Payload decoded by xtDecoae

_images/python-third-lib-dir-Pytorch.png
[root@instance-80v5csdx function-sayhi-codel# tree -L 1

— caffe2

|— calc.py
— _init__.py
— numpy

— pIL

— six.py

I— torch

L torchvision

5 directories, 3 files

_images/python-third-lib-dir-requests.png
[root@instance-8@v5cs@x function-sayhi-codel# tree -L 1

— certifi
|— chardet
— get.py
— idna

— __init,
{— requests
L url1ib3

5 directories, 2 files

_images/node-third-lib-dir-Lodash.png
[root@instance-8@vScs@x function-sayjs-codel# tree -L 2

I— index.js
L node_modules
L— lodash

1 directory, 2 files

_images/python-flow.png
container

container
Master
container
Function Manager|
- startstop - >| [etar
pool pub: t
: sub: tpy
start/stop
Python Runtime
-+ start/stop |-
|| Function A Function A
Instance 1 Instance 2

_images/systemctl-status.png
baetyl@baetyl:~$ sudo systemctl status baetyl
e baetyl.service - Baetyl

Loaded:
Active:
Main PID:
Tasks:
CGroup:

98 23 11

loaded (/lib/systemd/system/baetyl.service; enabled; vendor preset: enabled)
active (running) since Mon 2019-09-23 11:31:57 CST; 5h 55min ago

997 (baetyl)

10 (limit: 4623)

/system.slice/baetyl.service

L 997 /usr/local/bin/baetyl start

:31:57 baetyl systemd[1]: Started Baetyl.

_images/systemctl-status1.png
baetyl@baetyl:~$ sudo systemctl status baetyl
e baetyl.service - Baetyl

Loaded:
Active:
Main PID:
Tasks:
CGroup:

98 23 11

loaded (/lib/systemd/system/baetyl.service; enabled; vendor preset: enabled)
active (running) since Mon 2019-09-23 11:31:57 CST; 5h 55min ago

997 (baetyl)

10 (limit: 4623)

/system.slice/baetyl.service

L 997 /usr/local/bin/baetyl start

:31:57 baetyl systemd[1]: Started Baetyl.

_images/remote-flow.png
docker: custom network ‘baetyl’
native: host network ‘localhost’

report/forward———>| Cloud Management
Mast T _
e inspect : > Agent desire/backward ————— Suite
RESTful update |
o ! Remote Baidu
S 7 mMQTT matt ”| 1oTHub
! i MQTT
inspect :
update | mqtt
start/stop !
v]
e MQTT MQTT
o I L = > Client2 | | Client1
)

_images/write-node-script-none-dict.png
-~

MQTTBox

= Menu - all Connected ® Add publisher ® Add subscriber o]
edge_core_tcp - mqtt://127.0.0.1:1883
x
node
{"msg":"MQTTBox","type":"non-dict","say":"hello worl
QoS d"

<

0 - Aimost Once

Retain)

Payload Type

Binary Array :

e.g: 01001101,01010001,01010100,1010100,01000010,01101111,0
1111000

Payload

01001101,01010001,01010100,1010100,01000010,01101111,0
1111000

Publish

01001101,01010001,01010100,1010100,01000010,01101111,011
11000

topic:node, gos:0, retain:false
S5

qos : 0, retain : false, cmd : publish, dup : false, topic : t/hi, m
essageld :, length : 61, Raw payload : 123341091151033458347
781848466111120344434116121112101345834110111110451001
059911634443411597121345834104101108108111321191111141
0810034125

{"msg":{"id":12},"type":"dict","say":"hello world"}

qos : 0, retain : false, cmd : publish, dup : false, topic : t/hi, m
essageld :, length : 57, Raw payload :
123341091151033458123341051003458495012544341161211121
01345834100105991163444341159712134583410410110810
81113211911111410810034125

_images/write-node-script-third-lib-Lodash.png
MQTTBox

= Menu « ® Add publisher ® Add subscriber &
edge_core_tcp - mqtt://127.0.0.1:1883
" x
node
{"unique_array":[*Jane" 1,2],"sorted_users":[{"user":"Ja
Qos ne","age":32, "active" true},{"user":"barney”,"age":3

0- Almost Once.

Retain

Payload Type
Strings / JSSON / XML / Characters
e.g: {'hello'world')

Payload

{"amay": ["Jane", 1, "Jane", 1, 2] "users": [{ "user": "bamey", 'a
ge': 36, "active" true },{ "user": "fred”, "age": 40, "active" false
). "user™: "Jane", "age": 32, "active": true }]}

{amay": ["Jane", 1, "Jane", 1, 2] "users": [{ "user": "bamey", 'ag
136, "active": true }{ "user": "fred", "age": 40, "active": false },{
“user: "Jane", "age": 32, "active" true)]}
topic:node, qos:0, retain:faise

§

6,"active":true},{"user":"fred","age":40,"active"fals
e}],"filtered_users":[{"user":"fred","age":40,"active":fals
el

qos : 0, retain : false, cmd : publish, dup : false, topic : thi, m
essageld : , length : 231, Raw payload :
123341171101051131171019597114114971213458913474971101
013444494450934434115111114116101100951171151011141153,
45891123341171151011143458347497110101344434971031
01345851504434979911610511810134581161141171011254
41233411711510111434583498971141101011213444349710
31013458515444349799116105118101345811611411710112
54412334117115101114345834102114101100344434971031
01345852484434979911610511810134581029710811510112
593443410210510811610111410110095117115101114115345891
12334117115101114345834102114101100344434971031013
45852484434979911610511810134581029710811510112593125

_images/trans-flow.png
pub t

MQTT Client1

MQTT MQTT Client2 sub t
MQTT Client3

sub t/topic

_images/write-node-script-dict.png
000 MQTTBox

= Menu L all Connected ® Add publisher ® Add subscriber o]

edge_core_tcp - mqtt://127.0.0.1:1883

node
{"msg":{"id":12},"type":"dict","say":"hello world"}
QoS
0 - Almost Once s qos : 0, retain : false, cmd : publish, dup : false, topic : t/hi, m
essageld :, length : 57, Raw payload :
Retain 123341091151033458123341051003458495012544341161211121
- 01345834100105991163444341159712134583410410110810
Payload Type 81113211911111410810034125

Strings / JSON / XML / Characters

<

e.g: {'hello":'world'}
Payload

{"id": 12}

Publish

"id": 12}
topic:node, gos:0, retain:false
S8

{"chen": 12}

tonic:nnde _ane:N ratain:falco

_images/write-python-script-third-lib-Pytorch.png
eoe MQTTBox
Menu « @® Add publisher ® Add subscriber &
edge_core_tcp - mqtt://127.0.0.1:1883
x

Topic to publish
Py

Qos

0 - Aimost Once

Retain ()

Payload Type
Strings / JSON / XML / Gharacters

e.g: {'hello’ world’)

Payload

{"action
topic:py, qos:0, retain:faise
3§

{"action™"B"}
sonicioy_ane_ratainal

{"action": "B", "info": [[0.8114885091781616, 0.334125
45919418335, 0.3621305823326111], [0.97996670007
70569, 0.7610224485397339, 0.526630699634552], (0.
1924821138381958, 0.7775722742080688, 0.8128208

518028259], [0.8786837458610535, 0.2810121774673
462, 0.7653465270996094], [0.536931574344635, 0.12
757259607315063, 0.5092771053314209]]}

qos : 0, retain : false, cmd : publish, dup : false, topic : py/hi,
messageld : , length : 342, Raw payload : 1233497991161051111
103458323466344432341051101021113458329191484656494952
565653485749555649544954443248465151524950535253574957)
524956515153443248465154504951485356505151505449494993,
443291484657555757545455484848555548535457443248465554)
494850505252565351575551515744324846535054545148545757
54515253535093443291484649575052565049495 1565156495753,
564432484655555553555050555250485648545656443248465649)
505650485653495648505650535793443291484656555654565155)
525356544948535153443248465056494849504955555254555152
545044324846555453515254535055485757544857529344329148,
465351545751495355525152525451534432484649505553555053
575448555149534854514432484653485750555549485351514952
5048579393125

_images/write-python-script-dict.png
MQTTBox

= Menu « all Connected ® Add publisher ® Add subscriber &
connect-test - mqtt://127.0.0.1:1883
X

Topic to publish
py

QoS

0 - Aimost Once

Retain ()

Payload Type

Strings / JSON / XML / Characters
e.g: {'hello":'world'}
Payload

{"id":5}

Publish

{"id":5}
topic:py, qos:0, retain:false
3

{"id":5}

tonic:nv _ane:N ratain:falea

<

<

{"msg": {"id": 5}, "type": "dict", "say": "hello world"}

qos : 0, retain : false, cmd : publish, dup : false, topic : py/hi,
messageld : , length : 63, Raw payload : 12334109115103345832|
12334105100345832531254432341161211121013458323410
010599116344432341159712134583234104101108108111321191
1111410810034125

_images/write-python-script-none-dict.png
o0 e MQTTBox
= Menu <« all Connected ® Add publisher ® Add subscriber o]
connect-test - mqtt://127.0.0.1:1883
X
py
{"msg": "MQTTBox", "type": "non-dict", "say": "hello w
QoS orld"}

<

0 - Aimost Once

Retain)

Payload Type

Binary Array :

e.g: 01001101,01010001,01010100,1010100,01000010,01101111,0
1111000

Payload

01001101,01010001,01010100,1010100,01000010,01101111,0
1111000

Publish

01001101,01010001,01010100,1010100,01000010,01101111,011
11000

topic:py, qos:0, retain:false
3

qos : 0, retain : false, cmd : publish, dup : false, topic : py/hi,
messageld : , length : 67, Raw payload : 12334109115103345832
34778184846611112034443234116121112101345832341101
11110451001059911634443234115971213458323410410110
81081113211911111410810034125

